1.天然气漏气了 怎么办

2.天然气的成因类型及鉴别

3.天然气为什么闻到气味,却检查不到漏气?

4.天然气水合物资源远景预测

天然气动态扩散的原因分析是什么检查指标_天然气的扩散系数为

燃气就是可燃气体,常见的燃气包括液化石油气、 人工煤气、天然气。

燃气泄漏探测器就是探测燃气浓度的探测器,其核心原部件为气敏传感器,安装在可能发生燃气泄漏的场所,当燃气在空气中的浓度超过设定值探测器就会被触发报警,并对外发出声光报警信号,如果连接报警主机和接警中心则可联网报警,同时可以自动启动排风设备、关闭燃气管道阀门等,保障生命和财产的安全。在民用安全防范工程中,多用于家庭燃气泄漏报警,也被广泛应用于各类炼油厂、油库、化工厂、液化气站等易发生可燃气体泄漏的场所。

人们面对燃气泄漏而造成的种种事故威胁,就真的没有一个彻底的解决办法吗?据 有关专家介绍,使用燃气泄漏报警器是对付燃气无形杀手的重要手段之一。燃气专家指出,燃气泄漏或废气排放而大量产生的一氧化碳是燃气中毒事响应的根源,如采有用燃气泄漏报警器就能得到及时的警示。有关部门经长期测试同样得出结论,燃气报警器防止一氧化碳中毒事故发生的有效率达95%以上。

产品说明编辑

检测气体:天然气、液化气、城市煤气(H2)

工作电压:220VAC或110VAC、12VDC-20VDC

独到之处:

(1)新增传感器漂移自动补偿功能 ,真正防止了误报和漏报(2)报警器故障提示功能,以便用户更换和维修,防止了不报

(3)MCU全程控制,工作温度在-40度~80度

联网方式:有线联网功(NO、NC)

常见的报警器为了降低成本大多选用国产器件,很多生产厂家根本没有工业产品设计背景,以通用的电子设计思路指导产品设计.开发过程不规范,测试覆盖率过低,存在潜在的生命安全危害,很多厂家都不能提供基本的3C认证。

为了提高产品的可靠性,设计中的核心部件,电子芯片和传感器通常需要采用进口,并提供多种诊断和冗余设计,以提高系统的安全可靠性。具体可以参见因诺威环境安全技术的相关描述。

安装说明编辑

1、 报警器安装位置:距离气源半径1.5米范围内,通风良好处:

(1) 液化气比空气重,安装在距地面约0.3米处。(2) 天然气、城市煤气、一氧化碳等比空气轻,安装在距天花板约0.3米处。

2、不能安装报警器的位置:墙角、柜内等空气不易流通的位置;易被油烟等直接熏着的位置。

3、燃气报警器使用电压范围较宽,常见的是220V的民用电压产品,一般12V的电压比较少见,取电方式用的是电话线式接口,适宜对安全要求较高用户,安装在卧室,小巧实用!见右图

应用生产销售您心中想要的报警器1、电源灯:绿灯,通电后亮起,报警时熄灭。

报警灯:红灯,报警时亮起,停止报警时熄灭。

2、接通电源,绿灯亮起或闪烁3分钟后,报警器开始正常工作。

3、当所检测的气体达到报警点时,报警器开始报警,绿灯熄灭,报警灯亮起,蜂鸣器发出“B、B、B…”的报警声,当检测的气体的浓度下降到报警点以下时,报警器则停止报警。(一氧化碳报警有延时功能)

4、若增加了手动检测功能,当按动按键时,绿灯熄灭,报警灯亮起, 蜂鸣器发出“B、B、B…”的报警声。

5、若增加了联排气扇功能,当报警器报警时,已联接的排气扇开始启动,自动排除有害气体。

6、若增加了联机械手或电磁阀功能,当报警器报警时,已联接的机械手或电磁阀会自动关闭煤气阀,从而切断有害气源。

7、若增加了联网功能的,当报警器报警时,管理中心或控制中心同时收到常开常闭(NO、NC)信号。(对于增加了无线功能的,则报警主机将收到2-3秒的无线信号)

报警后可输出一对继电器无源触点信号(常开、常闭可跳线设置), 用于控制通风换气设备或为其它设备提供常开或常闭报警触点。

当环境中可燃气体浓度达到设定阈值时,能发 出声光报警信号, 可以输出继电器无源触点信号。

当周围环境可燃气体浓度降到响应阈值以下时,处于报警状态的探测器将自动恢复到正常工作状态。

安装使用编辑

燃气报警器由探测器与报警控制主机构成,广泛应用于石油、燃气、化工、油库等存在有毒气体的石油化工行业,用以检测室内外危险场所的泄漏情况,是保证生产和人身安全的重要仪器。当被测场所存在有毒气体时,探测器将气信号转换成电压信号或电流信号传送到报警仪表,仪器显示出有毒气体爆炸下限的百分比浓度值。当有毒气体浓度超过报警设定值时发生声光报警信号提示,值班人员及时采取安全措施,避免燃爆事故发生。

1.应用时的注意事项,燃气报警器固定式安装一经就位,其位置就不易更改,具体应用时应考虑以下几点。

(1)弄清所要监测的装置有哪些可能泄漏点,分析它们的泄漏压力、方向等因素,并画出探头位置分布图,根据泄漏的严重程度分成Ⅰ、Ⅱ、Ⅲ三种等级。

(2)根据所在场所的气流方向、风向等具体因素,判断当发生大量泄漏时,有毒气体的泄漏方向。

(3)根据泄漏气体的密度(大于或小于空气),结合空气流动趋势,综合成泄漏的立体流动趋势图,并在其流动的下游位置作出初始设点方案。

(4)研究泄漏点的泄漏状态是微漏还是喷射状。如果是微漏,则设点的位置就要靠近泄漏点一些。如果是喷射状泄漏,则要稍远离泄漏点。综合这些状况,拟定出最终设点方案。这样,需要购置的数量和品种即可估算出来。

(5)对于存在较大有毒气体泄漏的场所,根据有关规定每相距10—20m应设一个检测点。对于无人值班的小型且不连续运转的泵房,需要注意发生有毒气体泄漏的可能性,一般应在下风口安装一台检测器。

(6)对于有氢气泄漏的场所,应将检测器安装在泄漏点上方平面。

(7)对于气体密度大于空气的介质,应将检测器安装在低于泄漏点的下方平面上,并注意周围环境特点。对于容易积聚有毒气体的场所应特别注意安全监测点的设定。

(8)对于开放式有毒气体扩散逸出环境,如果缺乏良好的通风条件,也很容易使某个部位的空气中的有毒气体含量接近或达到爆炸下限浓度,这些都是不可忽视的安全监测点。根据现场事故的分析结果,其中一半以上是由不正确的安装和校验造成的。因此,有必要介绍正确的安装和校验的注意事项以减少故障。

2.燃气报警器安装的注意事项

(1)报警器探头主要是接触燃烧气体传感器的检测元件,由铂丝线圈上包氧化铝和黏合剂组成球状,其外表面附有铂、钯等稀有金属。因此,在安装时一定要小心,避免摔坏探头。

(2)报警器的安装高度一般应在160—170cm,以便于维修人员进行日常维护。

(3)报警器是安全仪表,有声、光显示功能,应安装在工作人员易看到和易听到的地方,以便及时消除隐患。 (4)报警器的周围不能有对仪表工作有影响的强电磁场(如大功率电机、变压器)。

(5)被测气体的密度不同,室内探头的安装位置也应不同。被测气体密度小于空气密度时,探头应安装在距屋顶30cm外,方向向下;反之,探头应安装在距地面30cm处,方向向上。控制器采用三芯屏蔽线与探测器连(注:单芯线径不低于0.75mm国标线,依实际距离而定),将屏蔽层与控制器机壳相连并可靠接地。当采用RVV线缆时,应穿金属管并将金属管可靠接地。

燃气报警器的施工接线说明图

参照控制器与探测器接线图,将控制器与探测器的对应端子相连接接线方式将输入控制器端子与探测器端子对应相接◆输出端子与联动设备的连接▲.当排风扇等感性设备满足小于等于5A/220VAV条件时,可直接与输出端子相连,但尽可能的避免负载设备直接与输出端子相连,当负载设备大于5A/220VAV时,必须外接转接设备;▲.控制器、探测器要保证可靠的接地;▲.进行各种安装操作时,需先断电,否则可能会烧坏主机。与控制器配套使用的探测器与控制器配套使用的探测器有:点型气体探测器。技术参数:◆ 检测原理:催化燃烧式、电化学式◆ 检测气体:可燃气体、有毒气体◆ 采样方式:自然扩散◆ 示值误差:±5%F·S/±10%/±5×10mol/mol◆ 响应时间:≤30s◆ 工作电压:DC12V~30V◆ 额定功率:≤3W◆ 温 度:-40℃~60℃◆ 湿 度:≤95%RH◆ 连接电缆:≥RVV3×0.75mm(国标线) ◆ 传输距离:≤1200m◆ 防爆等级:ExdⅡCT6◆ 安装方式:固定支架、管装、墙壁装◆ 安装螺旋:G1/2〃安装位置: 探测器应安装在气体易泄漏场所,具体位置应根据被检测气体相对于空气的比重决定。当被检测气体比重大于空气比重时,探测器应安装在距离地面(30~60)cm处,且传感器部位向下。当被检测气体比重小于空气比重时,探测器应安装在距离顶棚(30~60)cm处,且传感器部位向下。为了正确使用探测器及防止探测器故障的发生,请不要安装在以下位置:◆ 直接受蒸汽、油烟影响的地方;◆ 给气口、换气扇、房门等风量流动大的地方;◆ 水汽、水滴多的地方(相对湿度:≥90%RH);◆ 温度在-40℃以下或55℃以上的地方;◆ 有强电磁场的地方。

处理办法编辑

1、请立即打开门窗,关闭危害气源,不得开启或关闭任何电器开关。

2、立即向煤气管理部门报告,由专业人员进行检查处理。

3、经专业人员处理后,应对报警器做通风处理。

应急处理编辑

因燃气泄漏引起探测器报警并使用自动切断装置动作时,切勿开灯或打开任何电器开关;应立即打开窗户进行通风,等探测器红色报警指示灯熄灭后,查找确认燃气泄漏的原因(无法确认原因时应联络相关的燃气公司进行处理),并进行排除。确认探测器不再继续报警(燃气不再继续泄漏),按动手动开关打开自动切断装置恢复燃气。 请勿随意触动家用煤气报警器的电源,以防探测器不能正常工作。

技术参数编辑

电压选择:AC 220V/AC110;DC9V-16V

低功耗报警器整机静态功耗:<0.5W (按12VDC计算)

高功耗报警器整机静态功耗:﹤3.3W (按220VAC计算)

报警浓度:可燃气休:液化气 0.1%~0.5%;天然气0.1%~1%;城市煤气(H2)0.1%~0.5%;一氧化碳:1‰~0.4‰

采用美国进口PIC 16F676 是面前世界上最好的IC之一

燃气响应、恢复时间:≤30S 一氧化碳响应、恢复时间:≤200S 报警音量:≥70dB

工作环境:湿度≤97%RH 了 温度:-15℃-+50℃

独特功能编辑

自动关阀机械手,在燃气报警时自动关闭入户总球阀。使得完全可以实现24小时报警处警功能。

(1) 新增传感器漂移自动补偿功能 ,可以根据传感器的漂移而漂移 真正防止了误报和漏报. 此技术国内首创

(2) 报警器故障提示功能,传感器损坏自动提示 以便用户更换和维修,防止了不报.

(3) MCU全程控制,工作温度在-40度~80度.机械手可自动复位,无需手动复位,确保第一时间及时治理

可燃气体及一氧化碳对人体的危害

1、可燃气体浓度超过爆炸下限时,遇火种(打火机、电器开关、静电等)则发生爆炸,造成伤害。

2、一氧化碳为无色无味的剧毒气体,通过呼吸道吸入与人体血红蛋白结合,造成人体缺氧而中毒。

3、城市煤气中本身含有大量的一氧化碳,故燃气泄漏时,既有爆炸的危险,又有一氧化碳中毒的危险,另外,燃气、煤油、木材等不完全燃烧同样产生一氧化碳。

无论是天然气、液化气、还是煤制气,由于各种原因泄漏后,当室内燃气浓度超过爆炸下限时,遇火种(打火机、电器开关、静电等)则一定发生爆炸。为什么会煤气中毒?我国城市的人工煤制气得成分虽各不相同,但都含有较多的一氧化碳,例如,哈尔滨煤气含一氧化碳13,上海煤气含一氧化碳19,青岛煤气含一氧化碳21,秦皇岛煤气含一氧化碳高达30。众所周知,一氧化碳为剧毒气体,健康人在含一氧化碳1的空气中,10分钟则产生痉挛,半个小时就会死亡。所以,煤制气泄漏时,既有爆炸的危险,又存在一氧化碳中毒(直接中毒)的危险。另外,使用燃气热水器或煤炉而通风不良时,也会发生一氧化碳中毒(排气中毒)。什么叫爆炸下限?即在空气中遇火种爆炸的最低浓度,报警浓度设定在爆炸下限的1/4以下。例如:甲烷(天然气主要成分)爆炸下限为5.0(50000ppm)丙烷(液化气主要成分)爆炸下限为2.0(20000ppm)氢气(煤制气主要成分)爆炸下限为4.0(40000ppm)煤气泄漏的原因有哪些?任何家庭,无论如何注意,都可能有万一。其中点火失误、冒锅或风吹灭、中途熄火、总阀未管严等就占了泄漏原因的七成多。报警器为什么能知道燃气泄漏?燃气报警器的核心是气体传感器,俗称“电子鼻”。这是一个独特的电阻,当“闻”到燃气时,传感器电阻随燃气浓度而变化,燃气达到一定浓度,电阻达到一定水平时,传感器就可以发出声光报警。什么叫声光报警?燃气泄漏使室内浓度达到报警器浓度后,报警器的红色指示灯亮,蜂鸣器发出“辟-辟-”的报警声,所以叫做声光报警。燃气报警器为什么有有效期?质量不过关的传感器,一般1-2年性能就下降,因而丧失报警器的安全型。报警其中的其它电子元件(例如变压器、电容器、晶体管等)得寿命都有限,所以,连先进国家也规定有效期最多五年。为保安全,五年到期后必须更换新的报警器。

小知识编辑

燃气泄漏报警器原理

非常重要的燃气安全设备,它是安全使用城市燃气的最后一道保护。燃气泄漏报警器通过气体传感器探测周围环境中的低浓度可燃气体,通过采样电路,将探测信号用模拟量或数字量传递给控制器或控制电路,当可燃气体浓度超过控制器或控制电路中设定的值时,控制器通过执行器或执行电路发出报警信号或执行关闭燃气阀门等动作。可燃气体报警器的探测可燃气体的传感器主要有氧化物半导体型、催化燃烧型、热线型气体传感器,还有少量的其他类型,如化学电池类传感器。这些传感器都是通过对周围环境中的可燃气体的吸附,在传感器表面产生化学反应或电化学反应,造成传感器的电物理特性的改变。

燃气泄漏报警器功能

功能上可分为仅有泄漏报警功能的泄漏报警器和可以指示所探测到的燃气浓度并具有报警功能的检测报警器;从使用场所上可分为民用燃气泄漏报警器和商用报警器。民用报警器通常是独立的在住宅中使用的燃气报警器,功能较简单;商用报警器主要使用燃气的运输、储存场所、使用燃气和可能有燃气泄漏的的工厂和公共场所。城市燃气规范中规定地下室、半地下室、地上密闭空间的用气房间、建筑的管道井、封闭计量表房等都要安装燃气报警器。建筑和燃气的相关规范和法规也推荐使用民用燃气泄漏报警器。

安装步骤编辑

安装方法

在选定的墙面位置,对应随机安装板上的二个安装孔位作好打孔标记(板上挂钩应水平朝上);

打好安装孔,放入随机安装胶塞,然后用随机自攻螺钉将安装板固定在墙面上;

将机体背面的三个孔位对准安装板上的固定挂钩,挂好机体;

连接相关输出信号线后,接通电源。

状态测试

正常监测状态:通电预热3分钟后,绿灯稳定发光,表示报警器工作正常处于监测状态;预热过程中,报警器可能发出“嘟…嘟…”声及红灯闪烁,绿灯亮之前消失属正常。

现场报警状态: 当报警器周围空气中燃气含量超过报警点,报警器会发出“嘟…嘟…”间断刺耳鸣叫,同时红色指示灯闪烁,提醒用户尽快作现场处理;报警输出状态: 现场声光报警持续10秒后,不同规格的报警器会输出不同类型的报警信号,通知报警系统或启动相应的联动装置。

特征编辑

(1)通气口:燃气(天然气、液化石油气、城市煤气)通过报警器面壳与底壳之间空隙进入感应室。为了让空气正常循环,不要将报警器安装在很脏的、多尘的或油腻的地方。

(2)传感器:传感器应用了半导体技术,对可燃气体的感应灵敏度极高,并避免了误报警的发生。

(3)蜂鸣器:音量高达85分贝,发生提醒您注意潜在的危险,报警形式是:连续响。

(4)预热:报警器通电时,需预热2-3分钟,通电2-3分钟内不报警。

天然气漏气了 怎么办

1、天然气出现e7是主板上面拨码开关气种选择错误或拨码开关未拨到位引起的;

2、天然气是自然界中天然存在的一切气体,包括大气圈、水圈、和岩石圈中各种自然过程形成的气体;

3、天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层,是优质燃料和化工原料。

扩展资料:

天然气介绍:

天然气按在地下存在的相态可分为游离态、溶解态、吸附态和固态水合物。只有游离态的天然气经聚集形成天然气藏,才可开发利用。天然气按照存生成形式又可分为伴生气和非伴生气两种。

天然气是较为安全的燃气之一,它不含一氧化碳,也比空气轻,一旦泄漏,立即会向上扩散,不易积聚形成爆炸性气体,安全性较其他燃体而言相对较高。采用天然气作为能源,可减少煤和石油的用量,因而大大改善环境污染问题。

百度百科-天然气

天然气的成因类型及鉴别

天然气泄漏具体处理方法如下:

1、天然气泄漏,会闻到刺鼻的味道,这个时候,要果断的将天然气阀门关闭,避免天然气进一步扩散与空气中,增加危险程度。

2、接着,将室内的门窗都打开来,进行室内外的空气置换,有效的降低室内甲醛的溶度。

3、发生天然气泄漏后,不可开或关闭电源,否则容易产生火花,引发爆炸。也不可穿毛衣,易产生静电。更不能使用打火机。

4、室内人员需及时离开房子,跑到安全的地方,然后拨打天然气公司,让其安全相关人员前往处理。

天然气为什么闻到气味,却检查不到漏气?

(一)天然气的成因类型

天然气可分为烃类气和非烃类气两大类,在石油和天然气地质领域,天然气一般专指以含甲烷为主的可燃烃类气。烃类气又可分为两类:有机成因的和无机成因的,无机成因烃类泛指由无机质所形成的烃类气,如深源气等;有机成因烃类气是指那些由有机质通过细菌分解(生物成因气)、热分解(热解成因气)或煤化(煤系成因气)作用而形成的烃类气。M.Schoell(1980)将其作了更明确的界定:生物成因的天然气,C2+含量少于0.05%,成熟度小于0.6,它包括陆相(Bt)和海相(Bm)两种不同环境中形成的天然气。热成因的天然气包括与原油共生的潮湿型气体(T),这种天然气C2+含量高于5,成熟度在0.6~1.2之间。另一种热成因的天然气为干燥型气体(TT),C2+含量不会超过5%,多数小于1%,成熟度变化范围大,从0.8到3。按照Tissot等(1974)的意见,这类天然气可根据干酪根类型细分为:海相腐泥质(TTm)型和陆相腐殖质型(TTh)两类。除生物成因和热成因两大类外,还有一类介于两者之间的混合型(M)天然气(图14-5)。由陆相沉积环境腐殖型有机质形成的天然气,往往比由海相沉积环境腐泥型有机质形成的天然气更富含13C(两者的δ13C值相差12左右),而且随着有机质成熟度的增加,不管是由腐殖型有机质还是由腐泥型有机质形成的天然气,它们的δ13C值都趋向增加(图14-6,图14-7)。

图14-5 天然气的成因类型分类(据Schoell,1980)

图14-6 天然气中含碳气体的碳同位素组成(据Deines,1980)

根据多源、多阶段成气理论,天然气成因分类的主要依据是生气有机质的类型、成气作用和有机质演化阶段。张士亚等(1994)把有机成因烃类气分为四大类(表14-1),同时指出δ13C=-29‰是识别天然气源岩有机质母质类型的良好标志,而δ13C=-55‰则是识别天然气成气作用和有机质演化阶段的良好标志。张义纲等(1994)研究了天然气成因,他们根据δ13C值把天然气分为5种成因和12种气:①原生微生物成因(生物气);②原生热解成因(低熟、成熟、高熟的腐殖气和腐泥气);③表生菌解成因(油层、煤层菌解气);④后生半无机成因(热液烃气);⑤无机成因(深源气、高纯二氧化碳气)。

图14-7 海相腐泥质(TTm)和陆相腐殖质(TTh)母岩热成因甲烷的δD-δ13C关系图(据Schoell,1980)

表14-1 有机成因烃类气的分类

(据张士亚,1994)

(二)天然气成因类型的碳同位素界定

烷烃的碳同位素组成的一般特征(戴金星,1993)如下:

1.有机烷烃的碳同位素组成

1)有机烷烃气的δ13C值随成熟度(Ro)的增大而增高;

2)有机的同源同期甲烷及其同系物的δ13C值随烷烃分子中碳数的增大而增高;

3)由相同或相近成熟度源岩形成的煤成气甲烷,其δ13C值比油型气对应组分高;

4)甲烷及其同系物中的某些组分被细菌氧化后,会使其剩余组分的碳同位素组成变重。

母质相同但成熟条件不同或成熟度相同而母质不同的条件下形成的天然气,其碳同位素组成有着明显的区别。

2.无机烷烃类碳同位素组成

1)无机甲烷碳同位素的δ13C值大多比有机甲烷高;

2)无机甲烷及其同系物的δ13C值随烷烃气分子中碳数的增加而降低。

图14-8 天然气成因判别图

3.δ13C1特征

生物成因气的δ13C1均值小于-54‰,油田伴生气δ13C1均值介于-54‰~-40‰之间,过成熟气或煤型气的δ13C1均大于-40‰。同时,还可以利用轻烃气体中甲烷及其同系物的比值与δ13C1值划分天然气的成因类型(图14-8)。

4.天然气分类

在天然气的分类判识上存在很多划分标准,现在普遍接受的观点是将天然气按来源分为有机成因气和无机成因气,按有机成因中母质的不同分为油型气和煤型气,按其生成演化阶段分为生物气、生物-热催化过渡带气、热解气、裂解气。戴金星(1993)提出用甲烷、乙烷、丙烷碳同位素来鉴别天然气是否是煤型气和判别有机烷烃气的成因,并提出了区分不同成因天然气的方法和碳同位素界定范围(表14-2)。

表14-2 天然气碳同位素鉴定表

注:δ13C1为甲烷的δ13C值;δ13C2为乙烷的δ13C值;δ13C3为丙烷的δ13C值。 (据戴金星,1993)

5.天然气中δ13CCO2特征

天然气中δ13CCO2的特征是鉴别CO2成因类型及来源的重要指标。δ13CCO2重于-8是无机成因气,轻于-10是有机成因气,当δ13CCO2在两者之间时,可以是有机成因与无机成因的共存区或混合区(Daieta1.,2000)。

天然气甲烷的碳同位素组成随成熟度的增加而增加,乙烷碳同位素组成也随成熟度的增加而增加,只是增加的幅度不如甲烷大(戴金星,1999;戴金星,2005)。因此,除去混源情况外,天然气的乙烷碳同位素组成主要反映天然气的母质来源。而且由于甲烷成因的多源性及其易受到各种成藏次生作用的影响,人们更相信利用乙烷碳同位素组成判识天然气成因的可靠性,一般以C2在-28‰~-30‰作为腐殖型与腐泥型成因天然气的界限。而处于这一区间内则属混源气。

图14-9 塔里木盆地塔河油田原油碳同位素类型曲线

6.天然气的同位素异常

天然气的生成具有阶段性,烃源岩在不同演化阶段生成的天然气以及不同类型的天然气具有不同的地球化学特征。由于在地质条件下成气营力较为复杂,常可看到天然气的甲烷及同系物的碳同位素组成分布倒转或非线性变化的现象,这种气的成因可能与生物降解、异常高温或多源、多阶段复合有关。A.T.James等(1991)认为,来自木质-煤型生气烃源岩的天然气,其受源岩控制的程度大,木质-煤型有机质的天然气,其高分子量的湿气组分的碳同位素组成出现倒转,即正丁烷的碳同位素组成比丙烷轻。戴金星(1989)则认为,甲烷同系物的碳同位素组成轻重的全部倒转是混源(混合)气的特征,这种混合气包括不同类型母质的生成气的混合或同一母质的不同成熟阶段的生成气的混合。高波等(2006)在对塔河油田原油和天然气地球化学特征进行详细研究的基础上,根据油气蕴藏中得到的成藏信息,对塔河油田的油气充注期次进行了探讨。通过对原油不同族组分碳同位素的研究,得出塔河油田原油两期充注的地球化学证据(图14-9)。一般来说,正常原油碳同位素类型曲线符合δ13C饱和烃<δ13C芳烃<δ13C非烃<δ13C沥青质的顺序,而本区原油的沥青质碳同位素普遍变轻,部分原油的非烃碳同位素也比较轻,出现了碳同位素顺序的倒转,这说明本区原油至少经历了两期充注与成藏过程。早期充注的原油成熟度较低,原油及其族组成的碳同位素较轻,在成藏后因遭受生物降解作用,主要残留了非烃和沥青质等重组分;与后期充注的正常原油相混合后,原油饱和烃和芳香烃碳同位素主要表现为后期充注原油的特征,碳同位素相对较重,非烃和沥青质则表现为两者的混源特征而相对较轻。

(三)天然气成因类型的鉴别

1.有机甲烷和无机甲烷的鉴别

(1)有机成因甲烷的鉴别

关于一些有机成因甲烷的鉴别,目前较为统一的认识(戴金星,1992)是:①生物气δ13C1<-55;热解气δ13C1>-55‰,大部分大于-53‰;②生物气甲烷许多不与重烃气共生,有的仅有微量或痕量乙烷和丙烷与之共生,总重烃气常小于0.5%(柴达木盆地生物气甲烷与之共生重烃气小于0.2%),C1/C2+3>170,大部分在200以上,是干气;相反,热解气甲烷和乙烷、丙烷及丁烷共生,C1/C2+3大部分小于15‰,绝大部分小于10‰,为湿气;③生物气甲烷与油不共生,热解气甲烷与油共生;④图解法,用δ13C-C1/C2+3鉴别图版(图14-10),可区分生物气甲烷和热解气甲烷,前者在I1和I2区,后者在II1区。

图14-10 δ13C-C1/C2+3鉴别图版

(2)原油伴生(热解)气甲烷和油型裂解气甲烷鉴别

①原油伴生气δ13C1值大于-55‰至-40‰;油型裂解气δ13C1值大于-37‰至小于-30‰。②原油伴生气甲烷与之共存的重烃气含量大于5%,通常大于8%,C1/C2+3绝大部分小于10‰,是湿气;油型裂解气甲烷与之共存的重烃气含量小于5%,常常在3%下,往往没有丁烷。③原油伴生气甲烷通常为原油的附属物,溶解在原油中,油型裂解气甲烷往往在游离气(气层气)中。④图解法,用δ13C-C1/C2+3鉴别图版(图14-10),可区分原油伴生气甲烷和油型裂解气甲烷,前者在II1区,后者在Ⅱ2和Ⅲ1区。

戴金星在根据我国松辽、渤海湾、四川、柴达木、鄂尔多斯、塔里木、准噶尔、琼东南和东海等17个盆地、14个煤矿、5个温(热)泉点1007个气样的碳、氢同位素、轻烃、气组分等许多项目,总计10854个分析数据,同时参考国外许多有关资料的基础上,总结出有机和无机烷烃气识别的一般规律:除高成熟和过成熟的极少量煤型气甲烷外,凡甲烷碳同位素(δ13C1)大于-30‰的是无机甲烷,绝大部分有机甲烷δ13C1值小于-30‰。表14-3为国内外大量无机甲烷δ13C1值均大于-30的实例。

表14-3 世界上一些无机甲烷碳同位素组成

可以用地质综合分析法区别δ13C1>-30的无机甲烷与煤型气甲烷:煤型气甲烷通常产出在煤系中(澳大利亚Cooper盆地)或在煤系之上(中国文留气藏和汪家屯气田、中欧盆地Rothliegende气藏)或在煤系之下(中国华北油田坝县地区)。无机甲烷产出处,通常没有煤系,往往在火山区、地热区或深大断裂、俯冲带、洋脊附近,如我国腾冲硫磺塘和甘孜拖坝镇以及新西兰地热区。

2.有机烷烃气和无机烷烃气的鉴别

天然气甲烷的碳同位素组成随成熟度的增加而增加,乙烷碳同位素组成也随成熟度的增加而增加,只是增加的幅度不如甲烷大。因此,天然气的乙烷碳同位素组成如果除去混源外,主要反映天然气的母质来源。而且由于甲烷成因的多源性及其易受到各种成藏次生作用的影响,人们更相信利用乙烷碳同位素组成判识成因的可靠性,一般地以δ13C2在-28‰~-30‰作为腐殖型与腐泥型成因天然气的界限,而处于这一区间附近则属混源气。在热演化过程中乙烷碳同位素分馏较弱,因而,δ13C2是划分天然气母质类型的有效指标。乙烷、甲烷碳同位素的差值Δ13C2-1随热演化程度增高而减小,且基本不受母质类型的影响,可用于确定成熟度。因此,应用δ13C2-Δ13C2-1关系图可区分不同成因类型的天然气。

烷烃气的碳同位素系列对比可鉴别有机和无机烷烃气。所谓烷烃气碳同位素系列系指依烷烃气分子碳数顺序递增,δ13C值依次递增或递减。递增者(δ13C1<δ13C2<δ13C3<δ13C4)称为正碳同位素系列;递减者(δ13C1>δ13C2>δ13C3)称为负碳同位素系列。有机烷烃气具有正碳同位素系列,我国和国外含油气盆地有大量这样的有机烷烃气。无机烷烃气具有负碳同位素系列,这方面国内外目前研究均较薄弱。在我国松辽盆地北部芳深1井,东海盆地天外天构造新近系中,都发现具有负碳同位素系列特征的无机烷烃气。此外,在美国和苏联也有发现。

图14-11 C7系统三角图版

C7系统三角图版对于湿度较大的有机烷烃气的鉴别,可借助与之共生的同源的C7系统轻烃,能较好确定烷烃气属类。C7系统的化合物包括三类:正庚烷(nC7)、甲基环己烷(MCC6)及各种结构的二甲基环戊烷(ΣDMCC5)。正庚烷主要来自藻类和细菌,对成熟作用十分敏感,是良好的成熟度指标。各种结构二甲基环戊烷主要来自水生生物的类脂化合物。甲基环己烷主要来自高等植物木质素、纤维素、醣类等,是反映陆源母质类型的良好参数,热力学性质相对稳定。因此,以上述三类化合物为顶点编制的三角图,能较好判别有机成因气,从而也就可鉴别有机烷烃气。图14-11是我国C7系统三类化合物资料编制的三角图版:I区为油型气区,即油型烷烃气区;II区为煤型气区,即煤成烷烃气区。例如鄂尔多斯盆地塞18井的天然气中C7系统轻烃三类化合物各占比例:nC7为38.4%,MCC6为6.3%,ΣDMCC5为55.3%,以这些数据标在图上得点A落在I区,因此,它为油型烷烃气;再如渤海湾盆地苏桥气田苏402井天然气中C系统轻烃三类化合物各占比例:nC7为30.9%,MCC6为48.1%,ΣDM-CC5为21.0%,把这些数据标在图上得点B落在II区,因此,它为煤型烷烃气。

鉴别天然气中某组分的成因类型,不能推断天然气中其他组分也属同一成因。确定天然气的成因,对各组分都进行成因鉴别是最科学的。但这样要花很大人力与财力,一般只鉴别天然气中几个主要组分的成因类型,说明该天然气的主要成因从属。

用多项指标综合确定组分或天然气的成因,比单一指标鉴别更可靠。一定要把用指标识别气的成因类型与具体地质条件结合起来。戴金星(1992)根据“六五”和“七五”期间科研项目鉴别各类天然气的研究成果,同时参考了国外有关文献,概括出各类成因天然气综合鉴别表(表14-4)。该表可用来鉴别天然气组分,以至天然气的成因属类。

表14-4 不同成因类型天然气的综合鉴别特征

续表

(据戴金星,1993,简化)

天然气气源对比的关键是挑选合适的气源对比指标,如天然气组分、碳同位素、轻烃及轻烃同位素,判断出天然气性质,再结合岩石的性质和分布,确定天然气的烃源岩。

甲烷、乙烷、正构烷、异构烷的碳同位素在识别天然气成因及其母质类型中已发挥了重要作用,但C6以上单体烃碳同位素分布信息在油气/源岩对比研究中还停留在看图识字的水平上,还有很大潜力。正构烷、异构烷的碳同位素分布配合其碳数分布可以更可靠地确认油气生源及其烃源岩,甚至揭示其生烃机制。干酪根热解生烃、可溶有机质生烃、有机质经过微生物改造后生烃等不同的生烃机制,即未熟低熟油生烃机制和成熟油生烃机制的不同,在烃类碳同位素分布上理应有所反映。张林晔等认为,济阳坳陷未熟油主要源自可溶有机质(ZhangLY, et al.,2004)。日本Tho等通过实验说明,木质素经过微生物改造后,成熟门槛从300℃降到200℃(ThoK, et al.,2004)。ZhangYG于1979年在国内、1981年在英国刊物上首先提出未熟、低熟油的概念。

然而,由于油气形成的漫长性和本身的可流动性,在运移、聚集甚至储层对比中会经历一系列的变化。这样就会模糊甚至完全掩盖这些原生的相似性,从而大大增加对比的多解性和复杂性。为此,合理地选用对比参数,并综合各种地质及同位素地球化学资料是十分必要的。

3.轻烃单体苯、甲苯同位素的油(气)源对比

采用天然气中C-C稳定碳同位素组成进行气源对比是目前国内外最常用的方法,但是这种对比的局限性在于这些组成不仅受有机质类型控制,而且在不同程度上还要受到热演化程度、生物降解作用、运移等非成因因素的影响,在某些情况下,使气源对比的可靠性降低。因此,必须寻找到不受上述作用干扰、主要与成因有关的气源对比指标。近年来,天然气中苯和甲苯含量有时也用作对比指标。蒋助生等(2000)利用热模拟与在线同位素分析技术,从天然气及气源岩热解产物中的甲烷、乙烷、苯和甲苯的稳定碳同位素组成入手,结合塔里木盆地、鄂尔多斯盆地和莺-琼盆地的地质实例进行了对比研究,探讨了这些组成作为气源对比参数的可行性。发现热成熟度和运移效应对苯、甲苯碳同位素组成影响较小。研究结果表明,同一类型气源岩热模拟产物中苯、甲苯同位素组成受热成熟度的影响不大。在400~600℃热模拟实验中,除个别点外,变化小于1,说明它们基本上不受热成熟度的影响。同一类型的天然气、源岩的苯和甲苯碳同位素组成没有太大的差异,不同层位气源岩苯、甲苯碳同位素组成有明显区别,大多相差3以上。甲苯脱吸附实验表明,甲苯碳同位素组成在脱吸附过程中基本上不发生变化;而热成熟度和运移效应对C1—C2碳同位素组成影响较大,同一样品在不同热成熟度阶段甲烷碳同位素组成的变化可达10左右,乙烷碳同位素组成的变化可达5左右。甲烷的扩散效应可使甲烷碳同位素组成变化达15左右,吸附效应可使甲烷碳同位素组成变化达20左右。苯、甲苯碳同位素组成可作为气源对比的有效指标。甲苯碳同位素值与其他气源对比指标相结合使用,不仅可以有效地判识气源,而且还可以判识天然气成熟度。利用苯、甲苯碳同位素组成指标在我国塔里木等盆地气源对比中取得了较好的效果。杨池银(2003)通过对板桥凹陷深层及奥陶系潜山均钻遇的乙烷以上具异常重碳同位素的天然气研究,使用轻烃族组成、C轻烃组成、环烷指数及苯、甲苯碳同位素证实,气源主要为板桥凹陷古近系偏腐殖型烃源岩。

天然气水合物资源远景预测

天然气闻到气味却检查不到漏气的原因可能有以下几种:

1. 管道清洁不彻底,存在污垢或杂质,导致气味残留。建议您请专业人员进行清洗。

2. 燃气灶具燃烧器或喷嘴可能存在堵塞或损坏,导致燃烧不完全,产生异味。建议您请专业人员进行检修。

3. 燃气品质问题,可能会产生异味。建议您联系当地燃气公司了解燃气品质情况。

4. 天然气灶内部弹簧松动,导致天然气灶漏气。需要将天然气灶拆开,对里面进行维修。

除此之外,还可能是由于天然气管道或设施受损,导致气体泄漏,这种情况需要专业人员进行检修。为了确保安全,如果发现天然气泄漏,应立即关闭天然气阀门,并打开窗户通风,联系当地燃气公司或专业人员进行检修。

一、天然气水合物资源量估算方法

为评估天然气水合物资源量,人们曾经做了大量努力,20世纪80年代至90年代初,许多学者在对控制水合物形成条件与分布规律进行分析、推测的基础上,利用体积法对全球天然气水合物所含甲烷资源量进行过估算(Dobrynin等,1981;Mclvei,1981;Kvenvolden,1988;Sloan,1990),但由于实际资料的缺乏,参数的选择主要依据各种各样的假设,不同学者的估算结果差别很大,相差几个数量级。20世纪90年代中后期,随着地震反射、测井、钻井取样与测试技术在天然气水合物勘探中的广泛应用,一系列间接的地球物理方法被用来对天然气水合物与下伏游离气体的资源量进行了估计,参数的选择往往通过实测资料推算获得,其精度和可靠性大大提高。

目前国际上流行的天然气水合物资源评估方法可分为两类,一是基于天然气水合物地球物理-地球化学响应的已发现矿藏的常规体积法,该方法以日本地质调查所1992年进行的“容积法(体积法)”为代表;二是基于天然气水合物成因的未发现资源的概率统计法,该方法以美国地质调查局1995年的“未发现资源的概率统计法”为代表。

1.基于天然气水合物地球物理-地球化学响应的常规体积法

该类方法以地球物理、地球化学和钻井测试等勘查成果为基础,对已发现的天然气水合物的分布厚度、沉积物孔隙度和孔隙中水合物的含量直接演算,参数来自被评价区,因而结果较为可靠,目前仍然是以地球物理方法为主。与大陆边缘一般的沉积物相比,含天然气水合物的沉积层具有较高的纵波速度,因而可通过岩石物理模型的方法估算水合物的含量,识别BSR,确定其上覆水合物的含量及其下伏游离气体的分布。另外,精细速度分析及波阻抗反演、地震波形反演、叠前AVO技术在资源量评价方面也发挥了重要的作用,如20世纪90年代早期,School等(1993)、Max等(1996)运用多道地震剖面的VAMPS(Velocity and Amplitude Structures)分析天然气水合物及其下伏游离气体的存在以及水合物定量分析;Miller等(1991)通过对秘鲁滨外多道地震资料和合成地震记录来推断天然气水合物的含量及其下伏游离气层的厚度;Lee等(1993)利用多道地震反射的真振幅和层速度分析对沉积物中水合物的含量进行了定量分析。在有取样或者钻探的条件下,则利用沉积物中氯离子浓度变化、δ18O值的变化、取样器温度-压力变化和孔隙水成分测量等地球化学方法来评价甲烷水合物的含量多少。Dickens等(1997)对美国东南部布莱克海台水合物样品的甲烷含量直接进行了测量,其测量结果显示,垂向沉积剖面上的甲烷含量变化趋势与间接法得出的结论一致,但下伏游离甲烷气含量比间接法的结果高出三分之一。

日本学者对Gornitz(1994)发表的计算思路进行了扩充,即天然气水合物气田的原始资源量(Q),理论上是天然气水合物分解生成的气体总量(QH)、游离气体总量(QG)以及层间水中所含溶解气体总量(QL)的总和,即

我国海域天然气水合物地质-地球物理特征及前景

(1)水合物分解气体的资源量(QH)

分解气体的资源量(QH)为天然气水合物中甲烷量(V)与集聚率(R)的乘积;终极可采资源量(GH)又是分解气体的资源量(QH)与采收率(B)的乘积。即

我国海域天然气水合物地质-地球物理特征及前景

式中:A为水合物的分布面积;R为集聚率;ΔZ为天然气水合物稳定带的平均厚度;Φ为沉积物的平均孔隙度;H为天然气水合物饱和度;E为产气因子。

(2)游离气的资源量(QG)

在天然气稳定带(HSZ)内,剩余的游离气由于被认为是与层间水反应形成的天然气水合物,可以假定一般不存在具有资源量的游离气。因此,游离气的资源量(QG)最好用常规气田储藏量计算法计算HSZ下圈闭的游离气的量。水合物层下伏游离气资源量可用下式计算:

我国海域天然气水合物地质-地球物理特征及前景

式中:QG为游离气的原始资源量;GG为游离气的终极可采资源量;AG为游离气的分布面积;ΔZG为游离气层的平均厚度;RG为游离气的集聚率;ΦG为沉积物的平均孔隙率;P为地层压力;P0为标准状态的压力;T为沉积物的绝对温度;T0为标准状态的绝对温度;W为沉积物的水饱和率;BG为来自游离气的天然气的回收率。式中(AG×ΔZG×RG)表示水合物层下含游离气沉积物的容积。

(3)溶解气资源量(QL)

层间水中所含溶解气的量(QL)随温度、压力及盐度的变化而变化。因其与水合物层中所含气体量相比少得多,在计算大区域资源量时可以忽略不计。

2.基于天然气水合物成因的概率统计法

该类方法以天然气水合物成因为基础,主要用于未发现天然气水合物资源的评价,参数选择上主要参考区内已发现矿藏的实际参数,或与具有相似成矿地质条件的其他区域进行类比而获得,带有很大程度的推断性,因而参数往往以概率分布的形式参与统计计算。通常需要分别对生物成因气和热成因气进行评估。在评价生物气时,不需要引用气捕及运移通道的形成和烃类热成熟时间等指标,而有效孔隙度和甲烷生成量则是最重要的两个指标。热成因天然气水合物往往与油气勘探中烃类的形成过程类似,所以甲烷水合物的评估方法可与传统油气成藏的评价方法相类同,定量参数中的储层厚度和气藏大小,基本上与天然气水合物稳定带的体积相同,因此可根据研究区水深、海底温度和地温梯度等参数进行计算。如果研究区上述参数分布很不均匀,可将上述参数划分成若干可信度区分别计算与评价。

美国地质调查局(Collect,1997)考虑了生物气含量、生物气源层厚度、热成因气供给、时间、有效运移概率、储集岩相、圈闭机制、有效孔隙度、烃聚集指数、水合物稳定带范围、储层厚度、水合物饱和度和水合物含气率等指标,依据有限的实际参数对美国海洋和陆地上的天然气水合物资源分区带进行了初步评价,计算了各区带和整个美国天然气水合物中天然气资源量大致的概率分布,计算的天然气水合物资源量几乎就是天然气水合物中甲烷的总量。

评价含两个部分:①对区带属性进行风险评价,以判断区带中存在天然气水合物的概率;②对水合物含量的参数进行评价,以判断区带中可能的水合物量的概率分布。天然气水合物的资源量(Q)主要取决于以下5个条件(Gornitz,1994;Collet等,2000):①天然气水合物分布面积(A);②天然气水合物储层厚度(ΔZ);③沉积物孔隙度(Φ);④天然气水合物饱和度(H);⑤产气因子(E,即单位体积天然气水合物包含的标准温-压条件下的气体体积)。评价中没有考虑资源的可开采率,其计算公式为:

我国海域天然气水合物地质-地球物理特征及前景

通常,依据区带上的地震、地质、地球化学信息(水深图、沉积厚度分布图、沉积物中总有机碳含量、海底温度、地温梯度以及水合物稳定温-压域分布图等)以及类似地区的资料来进行评价,从而确定各参数的概率值。计算分3个步骤:①确定区带是否含水合物;②区带中水合物的量;③把上述两个步骤算得的结果结合起来考虑统计意义上的资源潜力。

二、天然气水合物远景资源量评价

(一)南海陆坡

1.常规体积法评估

根据南海海域BSR分布情况,综合考虑水深、稳定带厚度、有利构造区带、有利沉积区带和有利地球化学异常区分布等因素,在南海陆坡区共推测5个天然气水合物资源远景区块,分别为南海北部陆坡东部远景区、南海北部陆坡西部远景区、南海南部陆坡西部远景区、南海南部陆坡东部远景区和南海南部陆坡南部远景区,在此基础上,对各个区块进行了天然气水合物资源常规体积法评估。

(1)参数选择

天然气水合物分布面积与厚度 依据BSR的分布情况,计算出南海各远景区块天然气水合物有效分布面积在南海北部陆坡东部远景区约36787km2,南海北部陆坡西部远景区约26988km2,南海南部陆坡西部远景区约20197km2,南海南部陆坡南部远景区约26123km2,南海南部陆坡东部远景区约15737km2。整个南海海域BSR有效分布面积约125833km2。在已经开展天然气水合物资源调查的西沙海槽区,将BSR之上的弱振幅及空白带厚度作为含水合物层的厚度,其他区块采用稳定带潜在厚度作为含水合物层的厚度,得出各有利区块的含水合物层平均厚度在南海北部陆坡东部远景区约232m,海北部陆坡西部远景区约175m,南海南部陆坡西部远景区约160m,南海南部陆坡南部远景区约194m,南海南部陆坡东部远景区约152m。

孔隙度 孔隙度采用相似地区类比获得。大西洋边缘布莱克海台ODP164的994钻孔、995钻孔和997钻孔在含天然气水合物层位(190~450m)沉积物孔隙度分别为57.0%、58.0%和58.1%,而由南海ODP184的1143钻孔、1144钻孔、1145钻孔、1146钻孔、1147钻孔和1148钻孔的资料来看,在海底以下200~400m左右,沉积物孔隙度平均为55%左右,因此计算天然气水合物资源量时沉积物孔隙度取55%。

水合物饱和度 天然气水合物饱和度的准确计算较为困难,由于天然气水合物并不稳定,在采样过程中容易分解,因而难以直接测定天然气水合物饱和度的大小。许多学者应用各种间接方法对水合物饱和度进行了估计。由于天然气水合物富集同位素重的18O而且不含Cl-,因此采样过程中水合物的分解将造成沉积物孔隙水的δ18O同位素组成以及Cl-含量异常。因而根据沉积物孔隙水的氧同位素组成和Cl-含量就可以估计天然气水合物饱和度的大小,但这种方法存在一个缺陷,沉积物原地孔隙水δ18O同位素组成和Cl-含量并不知道,计算时通常采用海水的Cl-含量来代替原地孔隙水的Cl-含量并通过曲线拟合来确定原地孔隙水δ18O同位素组成,但这实际上并不十分准确,Egeberg等(1999)根据对流-扩散模型计算了原地孔隙水的化学组成,对天然气水合物的饱和度进行了更准确的估计;保压取心采样器可采取原地压力下1320cm3的样品,如果假定其中过饱和的甲烷均以天然气水合物的形式存在,则可以计算出水合物的饱和度;由于水合物和沉积物的物理性质存在诸多差异,因而可以根据地震剖面或测井数据的差异来估计水合物的饱和度,如垂直地震剖面上的速度数据和测井电阻率等。表7-5为一些学者对天然气水合物饱和度的估计。Kaster等(1995)根据卡斯卡迪大陆边缘889钻孔的声速测井以及垂直地震剖面速度数据计算得出水合物饱和度至少为15%;Spence等(1995)利用889钻孔地震速度资料估算水合物饱和度为11%~20%;Paull等(1995)根据孔隙水C1-含量异常计算出布莱克海台天然气水合物饱和度最高为14%,994钻孔、995钻孔和997钻孔平均饱和度分别为1.3%、1.8%和2.4%;Matsumoto等(2000)利用孔隙水氧同位素组成异常以及最新测定的氧同位素分馏系数计算出994钻孔水合物饱和度为6%,997钻孔水合物饱和度为12%;Holbrook等(1996)根据地震速度数据计算994钻孔水合物饱和度为2%,995钻孔和997钻孔为5%~7%;Dickens等(1997)利用保压取心采样器所获样品的甲烷含量估计布莱克海台水合物饱和度约为0~9%;Collet等(2000)依据电阻率测井数据估算994钻孔、995钻孔和997钻孔水合物饱和度分别为3.3%、5.2%和5.8%;Lee(2000)利用声速测井资料计算出994钻孔、995钻孔和997钻孔水合物饱和度分别为3.9%、5.7%和3.8%。根据ODP164的钻井结果,水合物不可能在整个稳定带中均匀分布,在特定含有较多水合物的层位其饱和度较高(14%),但其平均饱和度不太可能很高。据以上分析,体积法计算天然气水合物资源量时,水合物饱和度取3.5%。

表7-5 天然气水合物饱和度估计

表7-6 天然气水合物的部分参数特征

产气因子 天然气水合物有3种结构(Kvenvolden,1995):Ⅰ型、Ⅱ型(菱形晶体结构)和H型(六方晶体结构)。自然界中天然气水合物以Ⅰ型结构为主,Ⅰ型结构水合物仅能容纳甲烷(C1)和乙烷(C2)这两种小分子的烃类气体以及N2、CO2及H2S等非烃分子,其分子直径不能超过5.2×10-10m。每个单元的Ⅰ型结构天然气水合物由46个水分子构成2个小的十二面体“笼子”以及6个大的四面体“笼子”以容纳气体分子(Lorenson等,2000),因此,在理想状态下,每个Ⅰ型结构天然气水合物单元包含46个水分子以及8个气体分子,水/气分子比值(n,水合物指数)为46/8,即n=5.75。依此推算,在压力条件为28MPa的情况下,单位体积的水合物可以包含173体积的气体,即产气因子为173。实际上,在自然界的天然气水合物中不可能所有“笼子”均充填有气体,因此,水合物指数通常要大于5.75。许多学者对水合物指数进行了测定(Matsumoto等,2000),但结果却相差甚大,有些结果与水合物的晶体结构明显不符。Handa(1988)对中美洲海槽天然气水合物样品的分析结果表明,其水合物指数为5.91,墨西哥湾北部的格林大峡谷水合物指数为8.2。Ripmeester等(1988)测定了人工合成水合物样品的水合物指数,其范围为5.8~6.3。Matsumoto等(2000)测定的布莱克海台天然气水合物的水合物指数为6.2,从水合物指数与产气因子的对应关系(表7-6)可以看出,其产气因子为160.5。从实际测定的布莱克海台的天然气水合物样品所产生的气体与水的体积比(表7-7)来看,其变化范围为18~154,平均为76。由于在测定天然气水合物气体/水比值过程中存在孔隙水的混染,会造成计算结果偏低,Lorenson等(2000)采用水中的Cl-含量对气体/水比值进行了校正,因为天然气水合物中应该不会存在Cl-离子,其分解后的水中的Cl-含量应该是孔隙水混染所致,对比天然气水合物分解后的水与孔隙水中Cl-的含量就可以进行校正,计算结果表明,孔隙水的混染程度为2%~50%,布莱克海台校正后的天然气水合物气/水体积比为29~204,平均为104。从表7-7可以看出,水合物的气体/水体积比值并没有明显的地质模式。而沉积物较浅部位的天然气水合物气体/水体积比值相对较低,大多小于100,对应的产气因子相当低,是由于取样以及分析时的人为偏差抑或反映了地质过程的影响目前尚不太清楚。但据Holder等(1982)的研究,如果水合物“笼子”中气体的填充率小于70%(对应气体/水体积比值为151.8),将导致水合物的不稳定,因而水合物那些很低的气体/水比值可能更多的是由于取样以及分析时的人为因素造成的,其代表的只是水合物最低的气体/水体积比值。布莱克海台996钻孔与盐底辟有关的水合物出露较浅,其气/水体积比值相对较小,如果只考虑994钻孔以及997钻孔的天然气水合物样品,其平均气/水体积比为188.5,对应的水合物指数为6.6,与Matsumoto等(2000)测定的水合物指数较为接近,相应的产气因子为150.8。南海水合物成矿条件与布莱克海台相差不大,水合物最可能的产气因子范围在121.5(满足70%气体填充率)至160.5(水合物指数6.2)之间,计算资源量时产气因子取150。

表7-7 世界各地天然气水合物气体与水体积的比值

(2)体积法资源量计算结果

根据以上所选择的参数,不考虑集聚率(R),采用常规体积法(式5)计算得到南海5个远景区的远景资源量如表7-8所示。

应该说明的是,据国外钻探证实,在水合物层之下,还经常存在BSR之下储量相当可观的游离气(Dickens等,1997)。由于资料所限,难以解释游离气的分布,也难以选择合理的参数来评估游离气的资源量,因此,本次计算仅限于包含在水合物中的甲烷气资源量,没有考虑游离气的资源量。同时,由于目前识别BSR及含水合物层主要靠地球物理勘探,地球化学探测难以触及含水合物层,现场测试及室内分析得到的地球化学异常很少,不能说明问题,也难以确定水合物成矿气体的成因类型。因此,在上述资源量估算中,假设成矿气体为生物成因气,水合物中的烃类为甲烷。

表7-8 南海海域天然气水合物远景资源量估算结果

(3)法资源量计算结果

采用数学统计方法,根据前述分析结果,选取如下参数:A为取区块中BSR分布的有效面积(表7-9);ΔZ为区块中含水合物层平均厚度(表7-8);Φ为沉积物平均孔隙度,取55%;H为水合物饱和度,范围为2.0%~5.0%,平均取3.5%;E为产气因子,范围为121.5~160.5,平均取150。

利用(式10)进行法计算,得到南海各天然气水合物远景区块的资源量如表7-9所示。资源总计最小值为394×1011m3(394×108t油当量),中间值为667×1011m3(667×108t油当量),最大值为898×1011m3(898×108t油当量)。其中间值与上述体积法计算得到的资源量(表7-8)基本一致。

2.南海天然气水合物潜在资源的概率统计法评估

由于南海深水区域勘查程度很低,对潜在资源的评估中没有对区带属性进行风险评价,仅依据相似性原理,参照国外勘探程度较高的海域天然气水合物分布的统计规律对水合物含量的参数进行评价,计算了南海海域潜在的天然气水合物资源量的概率分布。

表7-9 南海各天然气水合物远景资源量计算结果(法)

(1)参数选择

水合物分布面积 海底天然气水合物分布面积具有一定的统计规律,据佐藤干夫统计,1992年以前公开发表的具有良好BSR分布图的海域,中美洲海沟区的墨西哥海区,面积为1.0×105km2,BSR的分布面积为1.9×104km2;危地马拉海区,面积为1.0×105km2,BSR的分布面积为2.0×104km2;日本四国海南海海槽面积为1.2×105km2,BSR的分布面积为3.5×104km2,BSR分布的区块面积达海域的20%~25%(佐藤干夫,1996)。因而,以南海稳定带潜在厚度大于50m、水深3000m以浅的陆坡区为天然气水合物潜在分布区,其面积为81745335km2,推测南海海域水合物潜在分布面积是该值的25%,即204363.3km2。

水合物实际产出厚度概率分布 我国南海地质特征与大西洋被动大陆边缘盆地类似,因而水合物分布规律也与其相近。Majorowicz等(2001)对加拿大大西洋边缘天然气水合物的厚度等参数进行了统计,编绘了该海域天然气水合物厚度分布的直方图(图7-19),由此可以计算出厚度的累积概率分布(图7-20),计算时假定南海天然气水合物厚度分布概率与之相同。

孔隙度概率、水合物饱和度概率和产气因子概率分布 Majorowicz等(2001)基于大量的钻井分析,得出了加拿大4个水合物成矿省的水合物分布面积、平均厚度、孔隙度及饱和度等参数的统计结果(表7-10)。孔隙度变化范围为22%~50%,而水合物饱和度的分布范围为2%~30%。美国地质调查局1995年在对海域天然气水合物资源进行评价时,孔隙度概率、水合物饱和度概率和产气因子概率分布全部采用表7-11中的值。计算中假定南海各参数与美国大西洋边缘海域的概率分布相同。

(2)资源量计算结果

选取上述参数,利用统计模拟法计算(式10)获得南海陆坡区的天然气水合物潜在资源量分布见图7-21。天然气水合物资源量最小值为91.66×1011m3(大于这一数值的累计概率为0.95),相当于91.66×108t油当量;最大值为6830.48×1011m3(大于这一数值的累计概率为0.05),相当于6830.48×108t油当量。概率期望值为1659.74×1011m3,相当于1659.74×108t油当量;潜在资源总量约为已推测资源量(体积法)的2倍。

表7-10 加拿大天然气水合物资源量分布

表7-11 孔隙度、饱和度和产气因子取值表

图7-19 大西洋边缘海域天然气水合物厚度分布频率直方图

图7-20 大西洋边缘海域天然气水合物厚度分布累计频率直方图

(二)东海冲绳海槽

采用产烃率法和残余有机碳法,分别针对冲绳海槽盆地各个坳陷生物气资源量和热成烃资源量进行了估算:其中生物气资源量为43.0×108t,热成烃资源量为30.0×108t。总资源量为73.0×108t(表7-12)。

采用容积法,当天然气水合物矿层充填率(H)为50%,聚集率(R)为0.01时,计算得到冲绳海槽天然气水合物总资源量为6.5×1012m3,即65.1×108t油当量。

图7-21 我国南海海域天然气水合物资源量分布累计频率曲线图

表7-12 冲绳海槽生物气资源量计算结果表

小结

1.南海部分

1)通过对陆坡区多道地震资料的再解释,识别并总结了BSR的区域分布规律和层位分布特征,探讨了部分海域BSR界面附近层速度及波形变化,分析了AVO属性等地球物理特征。初步研究表明,天然气水合物稳定带一般出现在中中新统之上,BSR埋深在海底以下约100~700ms(双程走时)。

2)依据多道地震资料识别的BSR及上部振幅空白带的发育情况,推算了研究区天然气水合物稳定带的分布与厚度。

3)根据实际温度、压力和盐及气体组分,开展天然气水合物形成的热动力学条件研究,建立相平衡模型及计算方法,以此推测天然气水合物稳定带的潜在厚度。模拟计算结果初步表明,南海海域天然气水合物形成所需要的水深一般大于500m,天然气水合物稳定带厚度一般在50~200m之间。

4)采用基于天然气水合物地球物理-地球化学响应的常规体积法和成因概率统计法,对南海天然气水合物资源量进行了初步测算。

2.东海部分

1)根据约3000km多道地震资料的解释,识别并总结了BSR区域分布规律和层位分布特征,初步圈定综合异常分布区,提出了3类BSR成因演化的地质-地球物理模式。

2)开展天然气水合物成矿的物理化学状态平衡数值模拟,建立了天然气-天然气水合物-盐-水体系中主要组分在气、液、固三相中的活度模型和化学势函数模型。

3)利用容积法、产烃率法和残余有机碳法等方法,对冲绳海槽的天然气水合物资源远景进行了评估。