1.测井在天然气水合物勘探与评价中的应用

2.Jason反演技术在天然气水合物速度分析中的应用

3.西安石油大学石油与天然气工程学科研究生培养方案

4.城市燃气企业财务风险及应对策略

5.石油天然气关键参数研究与获取

6.奥陶系风化壳产层天然气的来源分析

7.万家乐天然气热水器怎么样?三个方面分析

天然气动态分析课程内容怎么写的好_天然气气体分析操作规程

郭尚平,1930年3月17日出生于四川省荣县吕仙岩村,祖籍四川隆昌县云顶乡。其父郭运献系当地著名中医。

郭尚平自幼聪颖好学,又因家中人口众多,经济十分拮据,入不敷出,故从小就知勤奋努力,刻苦攻读。先是在盛产天然气和井盐的四川自流井(后为自贡市)玉皇庙小学读初小,用二年半学完四年课程后,郭尚平考人井神庙高级小学。 1939年,为躲避日本侵略军轰炸,全家迁返隆昌县云顶乡。郭尚平在该乡秀毓小学毕业后考入隆昌县中,继后升入成都清华高中学习。高中各学期均名列前茅,毕业时获保送直接升人清华大学,因未能筹足去北平(现北京)路费被迫放弃机会。

1947年,郭尚平在四川同时报考三个大学,均获录取,后进入重庆大学矿冶系,名列榜首,享受奖学金。郭尚平主攻石油天然气开发专业,学习成绩居全班之冠。

1951年毕业后留校任助教。一年后公派去前苏联留学,1957年返国。

郭尚平与罗广芳1952年恋爱订婚,1957年留学归国后结为伉俪。

郭尚平1953年去前苏联后,在莫斯科石油学院和全苏油田开发研究所读研究生,专攻渗流力学,师从莫斯科石油学院院长И·M·穆拉维耶夫(Myравьев)教授,全苏油田开发研究所所长、前苏联科学院通讯院士A·П·克雷洛夫(Kрылов)教授和数学力学家H·C·别斯古洛夫(Пuckyнов)教授。

在研究生阶段,郭尚平已表现出强烈的创新意识和独创能力。郭尚平放弃导师为他选定的应用前人理论和计算方法做研究的题目,独辟蹊径,提出了“当孔隙性砂岩油藏的油井井底有各种裂缝时的渗流理论和计算方法”作为自己的研究课题。当时,国际上刚出现一种提高产油量、注水量和石油采收率的新技术——地层水力压裂技术,郭预见到这将是很重要的、并将有长期应用推广价值的技术,非常需要赶快建立这种条件下的渗流理论和计算方法。导师很高兴地肯定了郭的思想。

郭运用数学物理分析、电模拟实验和现场实验分析三种方法,对这种孔隙-裂缝介质的渗流理论和计算方法做出了系统性和创新性的成果,不仅有单井条件下的理论研究,还有井群整体压裂下的计算分析。论文答辩时,20多位评委全票通过授予副博士学位。这在当时的学位论文答辩会上是罕见的。论文的部分内容很快即以三篇文章先后在前苏联《Tpyдымни》、《HeфтяноеXозяйство》上发表。

郭尚平于1957年返回祖国后,被分配在中国科学院石油研究所(后改名大连化学物理所)。石油部商请科学院调郭到石油部工作,未获同意,双方最后协议借调郭到石油部地质开发研究筹建处(后为石油研究院)工作。于是,郭尚平以主要精力完成石油部的科技任务,同时开始筹建中国科学院的渗流研究机构。

郭尚平深感有必要将学得的知识与祖国的建设紧密结合起来,做一点实际工作。正值此时,新发现的克拉玛依油田急需开发,石油部派他领导一个研究组去新疆完成此项研究和设计任务。郭尚平作为主要研究设计人,领导研究组,提出了初步设计和正式设计,经石油部批准后,在克拉玛依油田开发中得到实际应用。

在渗流理论方面,郭尚平预见到多底井、斜井和水平井等将对石油工业有重要作用,早在1959年就研究了这些特殊井底条件下的渗流理论和生产效率。这在当时还未被重视的技术,到80至90年代已得到国内外石油部门的极大重视和广泛应用。

1960年冬,中国科学院在兰州正式成立渗流研究室,郭尚平作为该室的创建人,同时又连续完成石油部的任务,参加大庆油田开发工作组,负责萨尔图中区开发研究设计中的渗流研究和计算任务。

当时的渗流研究室设置在中国科学院兰州地质所内,研究人员大多是20几岁国内外毕业不久的大学生和研究生,他们朝气勃勃,钻劲十足,在浓厚的学术气氛下团结协作,建室3年后,在中国力学学会第一次全国流体力学大会上,12篇渗流力学文章中,他们占了11篇,其中郭尚平与刘慈群合作完成的非均质地层中油水二相渗流计算方法,与当时国外方法相比,理论基础更完善,计算结果更接近实际,计算量少很多,在大庆和新疆等油田的研究和设计中起到了实际作用。由于科研成绩突出,渗流室于1964年被评选为中国科学院的先进集体,中国的主要报纸和电台进行了表扬报道。

1964年至1965年,郭尚平和刘慈群、李永善等人带领研究组与玉门研究所合作,研究成功了小层动态分析方法,使原来只能对一个大层笼统地、粗略地进行渗流动态分析,发展为能对大层内的每一个小层单独进行渗流分析。这项成果在油田得到实际应用,并于1965年在石油部的大庆现场会议上展示推广。

60年代初,当许多人否定人工地层模型的作用,而只强调天然岩心的作用时,郭尚平明确指出,这两种研究手段,各有所长,把二者结合起来,相辅相成,才能使渗流力学和资源开发的科学研究推进一步。郭尚平在渗流室提出立即开展人工平面地层模型研制,并亲自领导和参加研制工作。

1963年开发成功人工模型新技术后,大庆油田于1964年即派人到渗流室学习掌握。该技术在大庆、胜利、新疆和玉门等油田及渗流室持久地推广应用,对渗流力学和资源开采的研究起到了很好的作用。 1966至1976年间,郭尚平主要从事天然气渗流及其在四川气田动态分析和储量计算中的应用和陕甘宁油田开发(含石油渗流)研究。

在实验渗流力学方面,长期以来只注意宏观研究,即以各种类型的天然岩石和土壤样品以及人造多孔介质等为研究对象,对微观研究很不注意。宏观实验有很多优点,但本质性的不足是在当前条件下不能观测多孔介质内的真实过程和规律。早在60年代初,郭尚平就提出要开展渗流微观研究,并把这种渗流研究暂时称为“微观渗流”,沿用至今,已成了习惯用术语。

由于客观原因,直到1978年,郭尚平才得以动手开展微观渗流研究,首先需要自己开发微观渗流实验和测试技术,然后要进行大量的微观渗流实验和分析,难度很大。他组织和领导黄延章、胡雅仁、周娟、于大森、周炎如等数十人,集体潜心研究,终获成功。

到1988年,已开发成功由11种技术配套的微观渗流仿真和测试技术。迄今国外尚没有见到这类工作较完整的报道。

石油部科技司于1989年举办培训班推广此项微观渗流研究技术。油田和院校也纷纷要求转让技术或委托研究任务。中国科学院授予该技术科技进步一等奖。

以这套实验技术为主要手段,郭尚平带领研究集体从15个方面对复杂的新型渗流问题进行了创新性的研究。它们涉及多相渗流、非牛顿流体渗流、非等温渗流和物理化学渗流等渗流学科的前沿问题。通过对孔隙结构仿真、高温高压仿真和粘土矿物仿真的微观模型内的各相流体运动、流量变化、表面性质变化、相态变化、蒸发、冷凝以及粘土矿物膨胀、迁移、吸附和堵塞等物理、化学和力学过程的微观细节的观测,发现和揭示了一些重要的渗流机理和规律,肯定了一些原属分析推测性的认识,完善了一些原来不完全的认识,对一些重要的机理和规律提出了新的或系统化的见解和理论,并对有关的生产工程技术提出了建议和新的科学依据。这样,他和他的研究集体初步建立起了微观渗流理论,并使渗流理论在生产应用上有了更扎实的基础,从微观渗流角度对渗流理论做出重要发展。 1990年,由科学出版社出版了专著《物理化学渗流微观机理》。在国外,与作者类似的工作只有为数不多的零星文章发表,总的说来,涉及的广度,研究的深度和考虑的因素都不及郭尚平等的成果。这项成果获1991年国家自然科学三等奖。

测井在天然气水合物勘探与评价中的应用

①张国华等.1998,石油和天然气勘探地质评价规范,北京,中国海洋石油总公司。

勘探目标评价和风险分析方法是石油公司的核心技术之一。自1998年中国海油建立了《石油和天然气勘探地质评价规范》以来,对石油和天然气勘探全过程中的地质评价,尤以其中包括的勘探目标评价和勘探风险分析工作起到了促进作用,是使勘探管理工作与国际接轨的重要技术环节。勘探目标评价与勘探风险分析浸透了商业性理念和相关的评价技术,近期集束勘探方法的产生和更进一步的价值勘探的提出,就是执行这一规范的直接成果。

一、石油和天然气勘探地质评价

油气储量的增长是任何一个油公司生存、发展的根本所在,世界上的各大油气公司,无一不将油气勘探工作放在首位,并把油气风险勘探视为一种商业经营活动,力求勘探工作优质高效,即用有限的资金投入而能获得更多的、有商业开采价值的油气储量。

图5-32 油气勘探地质评价程序

中国海油一直在探索一套具有自己特点的油气勘探工作和管理模式,用以具体指导海上油气勘探工作。在总结勘探经验和吸取国外油公司管理经验的基础上,按照勘探工作要革新管理、优化结构、科技进步的指导方针,于1998年编制成此《规范》。它规定了中国海油在石油和天然气勘探全过程中的地质评价阶段及各阶段地质评价的目的、任务、程序、内容以及应采用的技术、标准和应采用的成果和要求。它适用于中国海油所进行的油气勘探活动中的地质评价工作。

一般而言,石油和天然气勘探地质评价的全过程,系指从某一特定区域的石油地质调查开始,到提交石油(或)和天然气探明储量为止的勘探活动中的地质评价工作。根据油气勘探活动的阶段性和地质评价的目的、任务,又将地质评价全过程进一步划分为区域评价、目标评价和油气藏评价三大阶段,具体阶段划分和工作程序见图5-32,各阶段的具体含义如下。

a.区域评价阶段:即从某一特定的地理区域(可以是盆地、坳陷、凹陷或其中的某一部分)的勘探环境和石油地质调查开始,到决定是否谋求区块油气探矿权为止的地质评价工作全过程。很明显,区域评价阶段的主要目的,在于谋求获得石油和天然气探矿权。

b.目标评价阶段:即从获得区块的油气探矿权后进行勘探目标优选开始,到预探目标钻后地质评价完成为止的地质评价工作全过程。当然,目标评价的主要目的,在于发现商业性油气藏。

c.油气藏评价阶段:即从预探目标的油气藏评价方案开始实施,到提交探明储量为止的地质评价工作全过程。油气藏评价阶段的主要目的,在于落实可供开发的石油和天然气探明储量。

二、区域评价

区域评价一般按资料准备、区域地质特征分析、含油气系统分析和勘探区块选择4个阶段循序进行(图5-33)。四个阶段的具体内容如下。

图5—33 区域评价程序

a.资料准备:为区域评价收集、提供有关投资环境、区域地质背景和各项有关的基础资料。

b.区域地质特征分析:阐明评价区的构造、沉积特点及其发育演化史。

c.含油气系统分析:确定评价区含油气系统及其油气资源潜力。

d.勘探区块选择:确定有经济开发前景的油气聚集区块,并谋求其油气探矿权。

在评价内容中,主要包括了资料准备,具体为各种资料收集、基础资料的补充和完善、建立区域评价数据库工作;区域地质特征分析,包括区域地层格架的建立、地震资料连片解释、沉积体系及岩相分析、表层构造和断裂体系分析、基底结构和盆地演化特点分析工作;含油气系统分析包括烃源识别、储、盖层特征及时空分布、盆地模拟分析、含油气系统描述等工作;勘探区块选择包括成藏区带评价、有利区块选择、谋求油气探矿权的建议等内容。

评价要求作到成藏区带评价;油气成藏模式预测;潜在资源量预测;区带勘探风险分析和工程经济概念设计和评价。

最终提交的主要成果包括文字报告的7项内容、27种附图、8类附表及相关专题研究附件。

三、目标评价

目标评价一般按资料准备、勘探目标优选、预探目标钻前评价、预探井随钻分析和预探目标钻后评价5个阶段循序进行(图5-34)。在勘探程度较高的地区,勘探目标优选和预探目标钻前评价可以同步进行;在已知油气成藏区带内则当以圈闭的落实和预探目标钻前评价为重点。

5个阶段主要内容如下。

a.资料准备:为目标评价提供必要的地质背景资料和基础资料。

b.勘探目标优选:优选可供预探的有利含油气圈闭。

c.预探目标钻前评价:提交有经济性开发效益前景的钻探目标及预探井位。

d.预探井随钻分析:发现油气藏及取得必要的地质资料。

e.预探目标钻后评价:对预探目标的石油地质特征进行再认识和总结勘探经验教训,并提交获油气流圈闭的预测储量及进一步评价的方案。

评价内容主要包括资料准备,具体为资料收集、地震资料采集和处理、建立目标评价数据库;勘探目标优选包括查明和落实各类圈闭、圈闭的油气成藏条件分析、圈闭的潜在资源量计算、预探目标优选;预探目标钻前评价包括圈闭精细描述、圈闭的油气藏模式预测、圈闭的潜在资源量复算、圈闭的地质风险分析、圈闭的工程经济概念设计和评价、预探井位部署建议、预探井钻井地质设计;预探井随钻分析包括跟踪了解钻井动态、随钻地层分析和对比、随钻油气水分析、钻井设计调整和测试层位建议等;预探目标钻后评价包括预探井钻后基础资料整理和分析、圈闭石油地质再评价、油气藏早期评价等项内容。

其中,十分重要的是要求对预探目标做到:圈闭精细描述、圈闭的油气藏模式预测、圈闭潜在资源量计算、圈闭地质风险分析、圈闭的工程经济概念设计与评价、预探井位部署建议和预探井钻井地质设计。

要求预探目标钻后评价做到:圈闭的石油地质再评价、油气藏早期评价、预测储量计算、油气藏开发早期工程经济评价和油气藏评价方案建议。

最后要提交预探目标评价报告,内容有预探目标评价及评价井钻探方案文字报告8项内容、附图16种、附表5类。预探目标钻后评价内容包括文字报告5项内容、附图15种、附表14类。

图5-34 目标评价程序

四、油气藏评价

油气藏评价按资料准备、油气藏跟踪评价和探明储量计算3个阶段实施(图5-35)。油气藏评价应是滚动进行的,随着勘探程度的提高和资料的积累,从宏观的油气层分布范围和规模等框架描述到微观的油气储集空间分布和体积等的精细描述,不断提高精度。

图5-35 油气藏评价程序

3个阶段的主要内容如下。

a.资料准备:为油气藏评价提供必要的地质背景资料、基础资料和各种条件。

b.油气藏跟踪评价:探明获油气流圈闭的油气层分布范围、规模和产能。

c.探明储量计算:提交可供商业开采的石油和天然气探明储量。

主要评价内容为资料准备包括资料收集、建立油气藏评价数据库;油气藏跟踪评价包括评价井钻井地质设计、评价井随钻分析、评价井完钻跟踪评价、评价方案调整建议、油气藏终止评价报告;探明储量计算包括油气藏结构、储层性质、储层参数、油气藏特征、油气藏静态模型描述、油气藏模式研究、探明储量计算及评价、开发方案概念设计、采收率研究、工程经济评价、探明储量报告的编写等。

需要注意的是,工程经济评价要包括勘探和开发工程参数,勘探和开发投资额操作费估算,经济模式和财务参数的选取,内部盈利率、投资回收期、净观值和利润投资比等指标的计算,敏感性和风险分析等内容。

最后应提交油藏终止评价报告和探明储量报告。

油藏终止评价报告包括文字报告6项内容、附图17种、附表23类。

探明储量报告按国家矿产储量委员会的储量规范和储量报告图表格式要求完成。

五、地质风险分析方法

勘探风险分析是石油公司勘探投资决策的重要参数,如前所述,勘探工作地质评价各个阶段都要进行风险分析。当然投资决策并不完全取决于地质风险的高低,还取决于石油公司的资金实力和承受风险的能力,但地质风险毕竟是投资决策中不可稀缺的基本参数。

根据多年勘探实践,并参考外国油公司风险分析经验和方法,我们确立了以地质条件存在概率为核心的地质风险分析方法。

本方法适用于中国海油油气勘探中预测圈闭的钻前评价分析,也可以用于对盆地或凹陷进行资源量预测时的地质风险分析。

此法的目的在于通过对形成油气藏基本石油地质条件存在的可能性分析,预测或估计目标圈闭的地质成功概率,为勘探目标经济评价和勘探决策提供依据。

一般而言,风险(Risk)通常解释为失败的可能性。油气勘探过程中的风险主要包括地质风险、技术风险、商业风险和政治风险等。地质风险(Geological Risk)指勘探者对勘探目标基本石油地质条件认识不足而导致勘探失败的可能性。而地质成功概率(Probability of Geological Success)或称地质把握系数,是预计目标的圈闭经钻探获得商业性油气发现的概率。地质风险分析(Geological Risk Ana1ysis)则是用概率统计学原理和圈闭评价方法,研究并量化形成油气藏的基本石油地质条件存在的可能性,预测目标圈闭的地质成功概率。

(一)地质风险分析方法

预测地质成功概率的方法有地质条件概率法、历史经验统计法和类比法等多种方法。这里采用地质条件概率法,当然,也可以根据具体情况使用多种方法进行比较和互相印正。

1.地质条件概率法的基本依据

a.油气藏的形成需要同时具备烃源、圈闭、储层、盖层和运聚匹配等基本石油地质条件,缺一不可;

b.各项地质条件必须满足彼此互相独立的假设;

c.各项地质条件存在概率之积即为该目标圈闭的地质成功概率。

2.地质条件存在概率的取值原则

a.各项地质条件存在概率的求取有多种方法,本规范采取由已知与未知的联系来判断未知的原则,并强调占有资料的类别和可靠程度对分析结果的影响。

b.正确分析各项石油地质条件存在概率和资料的可靠程度是测算目标圈闭的地质成功概率的关键。要求必须掌握本区的石油地质条件和资料状况在目标评价总和研究的基础上进行地质风险分析和取值。

c.由于不同地区地质条件千差万别,使用者也可以根据各盆地的实际情况对取标准作适当调整和修改,但应予以说明。

(二)地质风险分析程序

首先对基本石油地质条件进行分析,确定或估计其存在概率;然后计算单层或多层圈闭的地质成功概率。

1.基本石油地质条件分析

a.烃源条件:①根据同盆地、同凹陷或同构造带内油气田分布情况,已钻探圈闭或井的含油气情况,油气苗和其他油气显示情况(地球物理烃类检测、化探、摇感等),确定是否存在成熟的烃源条件;②烃源岩的体积;③烃源岩中有机质的数量和质量;④烃源岩中有机质的成熟度;⑤资料类型和证实成度(地震、录井、钻井、岩心或露头以及资料的密度和质量)。

b.储层条件:①同盆地、同凹陷或同构造带内已钻圈闭相同储层的储集能力及优劣成度;②储层的沉积相和储集体类型;③储层的岩性、厚度及分布的连续性;④储层的储集类型和物性条件;⑤储层段是否有同盆地、同凹陷或同构造带内的井可供标定、模拟和对比;⑥资料类型和证实成度(地震、录井、测井、岩心或露头以及资料的密度和质量)。

c.盖层条件:①同盆地、同凹陷或同构造带内已钻圈闭同类盖层的封闭能力及优劣程度;②盖层的沉积相、岩性、厚度及稳定性;③盖层的封闭类型和垂向封堵能力;④盖层中断层的数量、性质、规模及活动时期;⑤资料类型和证实程度(地震、录井、测井、岩心或露头以及资料的密度和质量)。

d.圈闭条件:①圈闭类型及规模;②同盆地、同凹陷或同构造带内同类型圈闭的含油气情况;③断块、岩性等圈闭的侧向封闭条件和性能;④地震测网的密度和资料的质量。

e.运移条件:①油气运移通道类型,如砂岩输导层、断层面、不整合面、底辟、高压释放带等;②供烃范围内圈闭与有效烃源岩连通的路径及通畅程度;③油气运移的方式、指向和距离。

f.保存条件:①圈闭形成后构造或断裂活动对圈闭封闭条件的影响;②区域水动力条件对油气聚集的影响;③是否遭受过水洗或生物降解破坏作用;④油气是否有过热或非烃气体(CO2、N2等)的潜入;⑤油气扩散作用对油气藏的影响。

g.运聚匹配条件:①同盆地、同凹陷或同构造带内同期的圈闭是否存在油气田或油气藏;②圈闭形成时间与油气主要生成时间、运移时间的关系。

2.地质条件存在概率的评估

使用地质条件存在概率评价标准,来评定目标圈闭各项地质条件的存在概率。

3.目标圈闭地质成功概率计算

a.单层圈闭地质成功概率的计算。

单层圈闭地质成功概率为该层各项地质条件存在概率之积,即:

中国海洋石油高新技术与实践

式中:Ps为单层圈闭的地质成功概率;Pt为烃源条件的存在概率;Pc为储层条件的存在概率;Pg为盖层条件的存在概率;Pq为圈闭条件的存在概率;Py为运、聚匹配条件的存在概率。

b.多层圈闭地质成功概率的计算。

如果各层圈闭对应的各项地质条件均相互独立,则:

该目标圈闭(构造)至少有一层圈闭获得地质成功,其概率为Pas:

中国海洋石油高新技术与实践

式中:Ps1为第一层圈闭的地质成功概率;Ps2为第二层圈闭的地质成功概率;Psn为第n层圈闭的地质成功概率,为了强调主要的钻探目的层,n值一般不大于3。

该目标圈闭各层圈闭均获得地质成功,其概率为Pts:

中国海洋石油高新技术与实践

最后,为了更好地把握主要地质风险因素,提高风险预测水平,并不断完善地质风险分析方法,要求进行钻后相关数据的整理,并按要求填写地质条件的钻探结果和钻后分析,对照钻前预测验证其符合程度,分析钻探成功或失利的原因。

六、集束勘探方法

中国海油入市以来,其经营管理方式迅速与国际接轨。反应在勘探上,也实现并正在实现着一种理念的转变,即由计划经济遗留的“储量指标”勘探理念——“我为祖国献石油”,向市场经济“经营型”勘探理念——“股东要我现金流”转变。入市后,股市对油公司业绩的衡量标准是现金流,它体现在勘探上不仅是新增储量的多少,而是一系列的经营指标——储量替代率、桶油勘探成本和资本化率。

储量替代率:是指新增探明可采储量与当年产量之比。

桶油勘探成本:是指每探明一桶可采原油储量所需的勘探费用,包括管理费用、研究费用、物探费用和无经济性发现的钻井费用。这些费用需进入当年勘探成本,叫做成本化。

资本化率:指有经济性发现的钻井费用与总勘探费用之比,这部分费用不进入当年勘探成本,可在油田开发中回收,故称资本化。

储量替代率反映了储量资产的增减。桶油发现成本是衡量勘探经营总体水平的指标,在保持稳定的勘探投人,保证100%储量替代率的前提下,要降低桶油发现成本,就要降低经营管理费用和每公里物探作业费用与每米进尺的钻井费用。当然大的储量发现会导致桶油勘探成本大幅度下降,但除特殊需要,油公司更希望保持股市稳定,无需披露重大储量发现。资本化率反映了油公司所占有的勘探区块(也是一种资产)的质量,它不仅可以降低桶油成本,更重要的是表现所占有的勘探区是否具备一定资源潜力、储量代替率是否有资源保障。

要想有多的储量发现就要打更多的井,在保证桶油发现成本承诺的前提下,只有降低单位作业成本。面对发展需要的压力、投资者的压力、服务价格走向市场后的压力,必须走出一条勘探管理新路子,于是集束勘探思路孕育而生。

集束勘探是探索适应市场经济条件下多快好省的勘探新理念,主要包括以下3层含义。

a.集束部署:着眼于一个领域或区带,选择具有代表性的局部构造集中部署,用较少的工作量以求解剖这一领域或区带,达到某一确定的地质目的。

b.集束预探:基于不漏掉任何一个有经济性油气藏为出发点,简化初探井钻井过程中取资料作业和测试,加强完钻过程中的测井工作,以显著提高初探井效率,大幅度降低初探井费用,用简化预探井、加速目标的勘探方法。

c.集束评价:一旦有所发现,则根据地下情况,优选最有意义的发现,迅速形成一个完整评价方案,一次组织实施,缩短评价周期和整个勘探周期。如有商业性,使开发项目得以尽快实施。

集束评价钻探包括两类不同取资料要求的钻井,一类是取全取准资料的井,此类井要充分考虑开发、工程、油藏甚至销售部门的需要,取足取好资料;另一类井是为了解决复杂油气田面上的控制问题,需要简化其中一些环节,作为集束井评价,以求得到以最低的评价费用取全取准资料,保证储量计算和编制ODP方案的需要。

在实施集束勘探一年的时间中,我们针对一个有利区带和目标共钻探集束探井20多口,初步见到以下效果:①储量代替率可望达到151%;②资本化率39%;③桶油发现成本保持在1美元;④完成了历年来最高的和自营勘探投资——16.75亿元;⑤建井周期缩短2/3;⑥每米钻井进尺费用降低40%。

通过一年的实践,主要体会如下。

1.以经济性发现为目的,统筹资料的获取

初探井是以经济性发现为目的的,关键在于证实有一定烃类产能、有一定厚度油气层的存在,精确的测试资料、储层物性资料、原油物性资料都可留在评价井钻探中获取。这就可以在初探井中作到不取心、不测试,从而大大简化钻井程序,达到降低钻井成本的目的。

一般来说初探井的经济成功率只有10%之间,我们可以在90%左右的初探井中实现低成本探井。事实证明用电缆式测试(MDO)、加旋转井壁式取心技术,完全可以保证不漏掉有经济测试价值的油气层。集束评价更有利于有目的地取好油藏评价的资料,在进行了早期油藏评价后,我们对油气藏模式有了基本的认识,就可以有目的地安排油藏评价井资料获取方案,大大减少了盲目性。

2.集束勘探在资料问题上体现了计划性、目的性

集束勘探“三加三简”的有所为和有所不为的获取资料原则——抓住有无油气,有油气则加强,无油气则从简;突出经济性,有经济性则加强,无经济性则从简;区分主力层与非主力层,主力层则加强,次要层则简化。这样保证了总体资料的质量,减少不必要的繁琐取资料工作量。

3.实现集束勘探要做好技术准备

首先应加强完井电测、简化钻井测试,测井要做好电缆测试(泵抽式取样)、旋转式井壁取心和核磁共振测试的技术准备。

其次,钻井工程借鉴开发生产井优快钻井经验,对初探井简化井身结构,打小井眼,不取心,尽可能保证钻井作业的连续性,提纯钻进时间比例,用集束勘探的办法尽量减少动员费用,在拖航、弃井等环节上提高时效,降低费用,保证稳定的、高质量的泥浆性能,打好优质的规则井眼,创造良好的测井环境。

第三,评价井的测试工作中,要做好直读压力计、多层连作、油管完井等技术准备。

4.集束勘探协调了长期困扰勘探家的三大矛盾

第一,协调了加大勘探工作量与有效控制成本间的矛盾。集束勘探可实现相同的勘探成本下,多打初(预)探井,总体上必然加快勘探进程。如在合同区义务勘探工作量确定的前提下,勘探成本的降低,则意味着抗风险能力的增强。

第二,协调了不同专业间的利益矛盾。长期以来地质家想多取资料——资料越多越好;钻井工程想快——钻完井越快越好;测井公司想省——下井次数越少越好。集束勘探实现了集约性的成本控制,使各专业各得其所。

第三,协调了老石油传统与现实市场经济间理念上的矛盾。在老石油地质家的传统观念中,是取资料越多越好、储量发现越多越好、采收率提得越高越好。把这些观念放在市场经济条件下,都会与勘探成本产生冲突,于是这些观念都变成了相对的、有条件的:资料——在保证不同勘探阶段起码质量要求下,取资料的工作量越少越好;储量发现——在保证勘探资本及时回收条件下越多越好,否则无须及时探明;采收率——在保证现金流和盈利率条件下越高越好,否则宁可要相对较低的采收率;勘探成功率——对油公司来讲,地质成功率毫无意义,油公司只要商业成功率,更关心的是勘探投入的资本化率;储量概念——不能只讲地质储量,对油公司来说更关心可采储量,尤其是可作为公司资产的份额可采储量。

集束勘探是我们由计划经济成功转向市场经济时,在经营理念上发生根本变革的表现。一年来的成功实践,不但在中国海油勘探家中产生了巨大观念上的震动,也影响到许多外国作业者,纷纷吸收或效仿集束勘探方法。集束勘探方法的产生,表明我国企业不仅可以进入国际市场,并且完全可以在市场运作中有所发现,有所发明,有所前进,创造出更好的经济效益。

在2002年中国海洋石油勘探年会上,将集束勘探发展为价值勘探的一部分,这是勘探工作进步的表现。这一新生事物的出现,使公司上市后出现了新情况:结束了国有独资的历史,十分关注投资的收益、储量增长的压力、成本的压力等。如此,必须对过去传统的勘探理念进行重新审视:由过去的地质调查研究型,变为经营油气实物的经营型,要创造经营价值。所以,价值勘探是一种以价值为取向的勘探理念,具体地说,每项工作以是否增加公司或股东的价值,作为决策的依据,即勘探的每个环节,以创造出更多的价值作为决策的出发点,勘探工作将围绕价值中心来进行。这也体现了勘探工作本身是发展的、动态的,在勘探工作不断进展中,随时拓宽、发展勘探方法,以促进海洋石油事业不停顿地、持续发展。

Jason反演技术在天然气水合物速度分析中的应用

陆敬安

(广州海洋地质调查局 广州 510760)

作者简介:陆敬安,男,(1970—),博士,高级工程师,主要从事综合地球物理资料解释工作。

摘要 测井是水合物深入勘探阶段—钻探阶段的必要手段,已得到较好应用。文章综合介绍和分析了ODP204航次、加拿大西北马更些河三角洲地区Mallik 5L-38井、IODP311航次及日本南海海槽等较新的水合物钻探调查的测井方法与技术,重点分析了核磁测井、电磁波测井及偶极横波测井等测井新技术在水合物勘探与评价中的应用,对测井方法在水合物勘探中存在的问题进行了讨论。

关键词 天然气水合物 测井方法 测井解释

1 前言

测井方法在油气藏勘探和开发过程中得到了广泛的应用,由于水合物的发现与研究相对较晚,测井方法在天然气水合物中勘探中的应用也只是随着钻探工作的开展而有了应用的空间。由于天然气水合物存在于合适的温压条件环境中,一旦脱离该条件,水合物即分解。因此,能够在原位地层压力和温度条件下测量地层物理特性的测井方法对发现和研究天然气水合物来说是其它的勘探方法所不能替代的(高兴军等,2003)。到目前为止,已有的水合物钻孔勘探中几乎都使用了测井方法,如危地马拉的570号钻孔、ODP164航次(Paull,C.K.,Matsumoto,2000)、State Ellien-2及日本南海海槽天然气水合物钻探、ODP204航次、Mallik 5 L-38井及IODP311航次等。测井方法对含水合物沉积层的识别起到了良好的效果。在水合物钻探过程中,一个井场往往要钻几口井,分别用于随钻测井、钻探取芯及电缆测井等。随钻测井方法与电缆测井是在钻井的不同阶段进行的,同样的测井方法原理基本相同。根据以往的情况分析,不是所有的水合物钻探都使用了随钻测井。作为测井工作的一部分及为了全面了解水合物测井方法及其特点,本文将分别加以介绍。

2 测井方法概述

2.1 随钻测井

天然气水合物钻探中随钻测井(LWD)的主要目的之一是为了确定合适的取芯位置。通常随钻测井与随钻测量(MWD)同时进行。LWD和MWD仪器测量不同的参数,MWD仪器位于紧邻钻头之上的钻环中,用于测量井下钻探参数(如钻头重量、扭矩等)。LWD和MWD仪器的差别是LWD数据被记录到井下内存当中并在仪器到达海面之后取出数据,而MWD数据是通过钻杆内的流体以调制压力波(或泥浆脉冲)的形式传输并进行实时监控。在LWD和MWD两种仪器联合使用的情况下,MWD仪器可同时将两种数据向井上传输。在最新的水合物钻探中,日本南海海槽的天然气水合物钻探、ODP204航次及IODP311航次使用了LWD测井,所使用的仪器名称及其输出参数见表1。

表1 天然气水合物随钻测井和随钻测量方法 Table1 The LWD&MWD tools description used for gas hydrate logging

204航次中使用的LWD和MWD仪器有钻头电阻率仪(RAB)、能量脉冲MWD仪、核磁共振仪(NMR-MRP)及可视中子密度仪(VND),如图1 所示,图中GVR6 为可视地层电阻率仪,包括深、中、浅电阻率及环带电阻率和自然伽玛五种测量。这是NMRMRP仪器首次用于ODP航次。不同的测井方法组合在不同的测井场合有不同的名称,如在日本的天然气水合物钻探中,密度与中子组合在一起称为CDN、伽马射线和电阻率组合称为CDR,尽管名称存在差异,但其测量的物理参数是一致的。

LWD测量被安排在钻孔之后及钻探或取芯作业所引起的负面效应之前进行。由于钻探和测量相距的时间较短,相对于电缆测井而言钻井液对井壁的侵入处于轻微阶段。

图1 ODP204航次使用的随钻测井及随钻测量仪器串

(图中数字单位为米,从钻头最底部算起)

Fig.1 LWD&MWD Tools Used in ODP204

(The unit of the number is meter and starts from the bottom)

LWD设备由电池提供电源并使用可擦写/编程的只读存储器芯片来存储测井数据。LWD仪器以等时间间隔的方式开展测量并与钻井架上监控时间和钻探深度的系统同步。钻探之后,LWD仪器被收上来下载数据。井上和井下时钟的同步能够使得将时-深数据与井下时间测量数据合并成一个深度测量的数据文件。最终的深度测量数据被传送到船上的实验室进行整理和解释。

2.2 电缆测井

电缆测井对天然气水合物储层的精确定量评价起非常重要的作用。由于天然气水合物储层的电阻率及声波速度明显偏高,因此电阻率测井和声波测井是识别天然气水合物的有效方法。另外,精确的评价天然气水合物储层还需要结合其它测井方法进行综合评价。天然气水合物钻探中使用过的电缆测井方法见表2,这些测井方法的详细介绍可在有关书籍和文件中找到。一些较新的测井技术,如FMI、DSI、EPT、CMR等测井方法在ODP204航次(Tréhu,A.M.,Bohrmann,2003)、Mallik 5L-38及日本南海海槽天然气水合物的识别和评价过程中发挥了重要作用。

表2 天然气水合物电缆测井方法 Table2 The wireline logging methods for gas hydrate exploration

续表

表2中大部分测井仪为204航次使用的方法,EPT在Mallik 5L-38井中首次使用,日本南海海槽的天然气水合物钻井勘探中使用了CMR仪(Takashi UCHIDA,Hailong LU,2004)。

3 水合物测井评价

天然气水合物储层测井评价的关键问题之一是建立合适的储层评价模型(手冢和彦,2003)。根据岩心观察,天然气水合物在沉积物中的分布主要有以下几种情形(王祝文等,2003):分散胶结物、节状、脉状及块状。永久冻土带及海洋天然气水合物的储层模型如图2所示。模型共分四类,其中永久冻土带两类:冻土层内及冻土层下,二者的区别为在冻土层之下,流体部分含自由水,而在冻土层内部流体部分含冰成分;海洋天然气水合物也分两类:一类为流体部分含自由水,另一类为流体部分含游离气。在ODP204航次及日本的南海海槽水合物钻探中使用模型C对测井资料进行解释,而在Mallik井中则使用的是模型A。模型A和C均是基于常规油气评价的双水模型提出的。

由于天然气水合物具有独特的化学成分及特殊的电阻率和声学特性,因此,通过了解天然气水合物储层的这些特征应有可能获得天然气水合物饱和度及沉积孔隙度(陈建文,2002;王祝文等,2003),这也是两个最难确定的储层参数。钻井是获取孔隙度及烃饱和度的重要数据来源。本质上,目前大部分的天然气水合物测井评价技术还是定性的,且借用的是未经证实的石油工业使用的测井评价方法。为了证明标准的石油测井评价技术在评价天然气水合物储层中的有效性,还需要进行大量的实验室和现场测量。由于天然气水合物以不同的方式影响每种孔隙度测量方法,因此可通过对比不同的孔隙度测量技术来估计天然气水合物的数量。

图2 永久冻土及海洋天然气水合物储层模型

Fig.2 The reservoir models for permafrost and marine gas hydrate

3.1 孔隙度评价

天然气水合物储层的孔隙度评价所利用的测井数据主要包括电阻率测井、密度测井、声波测井、中子测井、核磁共振测井等与地层孔隙密切相关的地层物理响应,同时还辅以自然电位、自然伽玛、岩心分析等数据来进行的。有关文献已经对部分常规测井方法的应用作了介绍,这里仅介绍较新的测井手段及其解释方法。

3.2 饱和度评价

(1)电磁波传播测井

电磁波传播测井仪只在 Mallik 5L-38井中使用过(S.R.Dallimore,T.S.Collett,2005),电磁波传播测井的垂向分辨率高于5cm,用来测量天然气水合物的原位介电特性,据此计算天然气水合物的饱和度。天然气水合物储集带的平均介电常数为9,在5到20之间变化;带内的平均电阻率超过5Ω·m,当仪器的工作频率为1.1GHz时,电阻率在2Ω·m到10Ω·m之间变化。电磁波传播测井仪同时输出传播时间及信号衰减两个参数。地层的介电常数及电导率可由下式计算(Y.-F.Sun,D.Goldberg,2005):

南海地质研究.2006

南海地质研究.2006

式中:tpl为慢度或传播时间,单位ns/m;a为衰减量,单位为db/m;εr为相对介电常数,无量纲;σ为电导率,单位为西门子/s,c(=0.3m/ns)为真空中光的速度。

Y.F.Sun及D.Goldberg等采用等效介质方法并假定含天然气水合物地层的多相系统可近似为连续、均质及各向同性介质,认为含天然气水合物介质的等效磁导率为1,其介电常数及体积密度遵从下面的体积平均混合规则:

南海地质研究.2006

南海地质研究.2006

南海地质研究.2006

式中,φa为第a种成分的体积百分比,ρa和εa分别是第a种成分的密度和介电常数,ρ和εr分别为体密度及体介电常数。这里假定孔隙性介质仅包含三种组分:固体颗粒、天然气水合物及水。从而上面的公式可以简化为:

ρ=(1-φ)ρs+φShρh+φ(1-Sh)ρw (6)

南海地质研究.2006

式中,φ为总孔隙度,Sh为天然气水合物的饱和度,ρs、ρh及ρw分别为固体颗粒、天然气水合物及水的密度,εrs、εrh及εrw分别为固体颗粒、天然气水合物及水的介电常数。在已知每种组分的密度和介电参数情况下,就可依据介电和密度测井由上面的方程计算出含天然气水合物地层的孔隙度和水合物饱和度。

图3所示为电磁波传播测井在Mallik 5 L-38井中含水合物层的传播时间与电阻率图。从图中可以看出,电磁波传播时间曲线与声波传播时间曲线具有相似的趋势,但其分辨率更高。右边的电阻率曲线道上,电磁波传播电阻率的分辨率也明显高于感应电阻率。

图4为根据电磁波传播测井求出的地层孔隙度及天然气水合物饱和度。图中中子孔隙度的数值偏高,这是由于中子孔隙度测量的含氢指数不仅与游离态的氢有关,还与束缚水中的氢有关。由于电磁波传播测井具有较高的垂向分辨率,因此其在揭示含天然气水合物层的细微结构方面拥有独特的能力。

(2)声波测井

与不含天然气水合物的沉积层相比,含有天然气水合物的沉积层呈现出相对较高的纵波和横波速度。目前已提出了许多不同的速度模型来预测天然气水合物对弹性波速度的影响,如时间平均方程、等效介质理论、孔隙填充模型、胶结理论、加权方程及改进的Biot-Gassmann理论(BGTL)等。以下介绍BGTL的基本理论及应用效果。

根据纵横波速度的如下关系式:

Vs=VpGα(1-φ)n (8)

式中,Vp为纵波速度,Vs为横波速度,α为骨架物质的Vs/Vp比值,n的值取决于不同的压力和固结程度,φ为孔隙度,G为取决于骨架物质的参数,Lee(2003)推导出了下面的剪切模量μ:

南海地质研究.2006

其中,

南海地质研究.2006

式中的kma、μma、kfl及β分别为骨架的体积模量、骨架的剪切模量、流体的体积模量及Biot系数。

Biot-Gassmann理论给出了沉积物体积模量的计算方法:

k=kma(1-β)+β2M (11)

饱和水的沉积物的弹性波速度可由下式依据弹性模量计算:

南海地质研究.2006

图3 电磁波传播测井曲线与声波及感应电阻率曲线的对比

(其中声波传播时间、电磁波传播时间较低段及电阻率显示高阻值段为水合物层)

Fig.3 The comparison of logging curves between EPT,acoustic and induction

(The depth interval between 906.5~925meters is the gas hydrate zone)

式中ρ为地层的密度。

对于松软岩石或未固结的沉积物,采用如下的Biot系数

南海地质研究.2006

对于坚硬或固结的地层,采用Biot系数为

β=1-(1-φ)3.8 (14)

Lee(2003)建议采用下面的方程计算n值:

图4 电磁波传播测井计算出的地层孔隙度及天然气水合物饱和度

Fig.4 The porosity and gas hydrate saturation calculated from by EPT logging

南海地质研究.2006

式中,p为差分压力(MPa),m代表固结或压实对速度的影响。实际问题中,?φ/?p很少知道,上式中的m很难直接应用。测量数据分析表明固结沉积物的m值为4~6,未固结沉积物的m值为1~2。

参数G用于补偿当骨架为富含粘土的砂岩时实测值与预测值之间的差异。对于泥质砂岩,G值为:

南海地质研究.2006

其中,Cv为粘土含量百分比。对于含天然气水合物沉积有如下的求取G的方程:

南海地质研究.2006

式中Ch为孔隙空间中天然气水合物的浓度。Lee(2002)指出含天然气水合物沉积的n=1及G=1。由于这些参数是在没有考虑速度发散的情况下在超声频率范围由速度获得的,因此参数n和G可以认为是用来拟合测量数据的自由调节参数。图5为根据纵波速度及NMR孔隙度求出的天然气水合物浓度对比图。

图5 由纵波求出的天然气水合物浓度及由NMR求出的天然气水合物饱和度

Fig.5 The gas hydrate saturation calculated from P-wave and NMR

根据分析结果可知,当采用声波数据估计天然气水合物浓度时,P波速度优于S波速度,主要原因是当采用P波速度时与BGTL中的n和G参数有关的误差较小;另外,在纯砂岩层段,NMR孔隙度测井估计的天然气水合物浓度值略高于由P波速度估计的数值。

(3)核磁共振测井

核磁共振测井在描述天然气水合物沉积方面起着重要作用。如果与密度孔隙度测量结合起来,可能是获取天然气水合物饱和度的最简单同时也是最可靠的手段。核磁共振测井仪仅对孔隙空间中的液态水有响应,对天然气水合物没有响应。计算储层孔隙度和天然气水合物饱和度的公式如下:

南海地质研究.2006

南海地质研究.2006

式中,水的氢指数HIw?1,甲烷水合物的NMR视氢指数HIh=0。水的密度ρw=1.0g/cm3,天然气水合物的密度ρh=0.91g/cm3,砂岩骨架的密度ρma=2.65g/cm3,Ph为天然气水合物的NMR极化校正值,仅与HIh伴生出现。λ=0.054,因此

南海地质研究.2006

声波和电阻率测井求出的饱和度在大部分层段是一致的,而在1003~1006m、1014~1020m之间,三种方法给出了三种不同的结果。而核磁共振方法与另两种确定的方法得到的结果不一致,造成这种不一致的原因目前尚不得而知,有待于进一步分析。

3.3 地层应力分析

图6 1088m深度处天然气水合物层段发散曲线

图6中a)图分别为快横波偶极挠曲波(红色)、慢横波偶极挠曲波(深蓝色)、低频单极斯通利波(淡蓝色)及高频单极斯通利波(绿色);b)图为相应的平均谱特征。

Fig.6 The dispersion curves from the gas hydrate interval at a depth of 1088m

a)The dispersion curves for the fast shear dipole-flexural(red),the slow shear dipole-flexural(dark blue),the low frequency monopole stoneley(light blue)and high frequency monopole stoneley(green);b)Average spectral characteristics

交叉偶极声波测井数据提供了描述地层横向各向异性的条件。传统的处理是在时间域进行的,得到的是地层各向同性或各向异性特征(Lee,M.W.,2002)。声波各向异性既可以是内在的,也可以是应力诱导的。最近的研究表明交叉偶极测井数据的频域处理可以将内在各向异性与应力诱导的各向异性区分开。交叉偶极测井数据的频域处理还使得对地层横波慢度的径向变化描述成为可能,对交叉偶极挠曲波的慢度频域分析还表明低频部分的探测深度达到六倍的井孔半径,可探测到原状岩石,而高频部分的偶极挠曲波则可以穿透一倍井孔半径的深度,探测到机械损坏区。高频测量数据偏离均质、各向同性模型则是机械破坏的指示。分析偶极发散曲线可以估计机械破坏区的深度。

声波数据的处理分两步进行:①慢度及各向异性分析,及②发散曲线分析。

图6及图7所示分别为含天然气水合物层及水填充的各向异性层段的发散曲线。曲线发散分析是了解声波波形数据的有效方法。在低频段,挠曲波穿透能力深至地层并可探测到远场应力;在高频段,挠曲波探测靠近井周的应力。图6a的纵波首波慢度大约为300us/m,它是非扩散型的且最大激发频率超过8 kHz。斯通利波慢度为850us/m,同时含有淡蓝色及绿色的点,表明低频和高频单极激发都能产生斯通利波。两条正交的偶极挠曲波发散曲线相互重叠。这是在垂直于井孔的平面内地层为各向同性的关键指示。

图7 1112.8m深度处水填充各向异性层段发散曲线

Fig.7 Dispersion curves from the water-filled anisotropic interval at a depth of 1112.8m

a)The dispersion curves for the fast shear dipole-flexural(red),the slow shear dipoleflexural(dark blue),the low frequency monopole stoneley(light blue)and high frequency monopole stoneley(green);(b)Average spectral characteristics

图7a所示与图6a所示具有明显的不同,即它是各向异性层。偶极挠曲波清楚显示出在低频段的各向异性特征。地层的快横波慢度约为900us/m,而慢横波约为1100us/m。这指示出了22%的各向异性。与含天然气水合物层段相比,纵波数据高度发散。

4 结论

测井技术在天然气水合物勘探的高级阶段是必不可少的工具,其对天然气水合物储层参数的精确评价对计算天然气水合物的储量至关重要,并为天然气水合物的开采提供准确的层位定位及基础数据。测井方法的发展日新月异,数据解释的精度也不断提高,在利用测井技术研究天然气水合物储层时仍限于移植油气评价方法,由于天然气水合物在地层中具有不同于油气的赋存状态,对于这样做的合理性还有待于深入的研究。根据以上研究成果得出以下结论:

1)电磁波传播测井由于具有较高的垂向分辨率,对于较薄的地层显示出较其它测井方法具有精细评价饱和度的优势;

2)核磁共振测井反映的是自由流体所占的孔隙空间,有利于详细评价自由水、束缚水及水合物所占的空间,但有关核磁测井的精细解释尚需建立在实验分析的基础上;

3)偶极声波测井对预测地层各向异性及应力分布有良好的效果;

4)另外,还应开展对天然气水合物样品的实验室研究,以便对测井解释结果进行刻度。

参考文献及参考资料

陈建文.2002.天然气水合物及其实测的地球物理测井特征,18(9):28~29

高兴军,于兴河,李胜利,段鸿彦.2003.地球物理测井在天然气水合物勘探中的应用,地球科学进展,18(4):305~311

手冢和彦,等.2003.天然气水合物的测井解析,海洋地质动态,19(6):21~23

王祝文,李舟波,刘菁华.2003.天然气水合物的测井识别和评价,23(2):97~102

王祝文,李舟波,刘菁华.2003.天然气水合物评价的测井响应特征,物探与化探,27(1):13~17

Lee M.W.2003.Velocity ratio and its application to predicting velocities:United States Geological Survey,Bulletin 2197,15p

Lee,M.W.2002.Biot-Gassmann theory for velocities of gas hydrate-bearing sediments,Geophysics,V.67,1711~1719

Paull C K,Matsumoto R,Wallace P J,and Dillon,W P(Eds.).2000.Proceedings of the Ocean Drilling Program,Scientific Results,Vol.164

S.R.Dallimore and T.S.Collett(ed.).2005.Geological Survey of Canada Bulletin 585,Scientific results from the Mallik 2002 Gas Hydrate Production Research Well Program,Mackenzie Delta,Northwest Territories,Canada

Takashi UCHIDA,Hailong LU*,Hitoshi TOMARU**and the MITI Nankai Trough Shipboard Scientists,Subsurface Occurrence of Natural Gas Hydrate in the Nankai Trough Area:Implication for Gas Hydrate Concentration RESOURCE GEOLOGY,Vol.54,No.1,35~44,2004

Tréhu A M,Bohrmann G,Rack F R,Torres M E,et al.2003.Proceedings of the Ocean Drilling Program,Initial Reports Volume 204

Y.-F.Sun,D.Goldberg,Analysis of electromagnetic propagation tool response in gas-hydrate-bearing formations,in Scientific Results from the Mallik 2002 Gas Hydrate Prodction Research Well Program,Mackenzie Delta,Northwest Territories,Canada,(ed.)S.R.Dallimore and T.S.Collett;Geological Survey of Canada,Bulletin 585,8p

The Application of Well Logging To Exploration And Evaluation of Gas Hydrates

Lu Jingan

(Guangzhou Marine Geological Survey,Guangzhou,510760)

Abstract:Well logging is the indispensable approach when the exploration of gas hydrates step into drilling and good results has been illustrated.The paper briefly introduces and construes the well logging technologies employed in the exploration of gas hydrates of Mallik 5 L-38,IODP311 and MITI Nankai-trough well.The emphasis lies in the analysis of the application of NMR,EPT and DSI logging to exploration and evaluation of gas hydrates.Also some issues during the well log interpretation of gas hydrates are discussed.

Key Words:Gas hydrates Well logging methods Well logging interpretation

西安石油大学石油与天然气工程学科研究生培养方案

梁劲1 王宏斌1,2 梁金强1

(1.广州海洋地质调查局 广州 510760;2.中国地质大学(北京)北京 100083)

第一作者简介:梁劲,男,1971年生,高级工程师,1995年毕业于成都理工学院信息工程与地球物理系应用地球物理专业,主要从事天然气水合物调查与研究工作。

摘要 本文采用Jason 反演技术对南海北部陆坡A 测线纵波速度进行计算,结合BSR、振幅空白带以及波形极性反转等多种水合物赋存信息的分析,对水合物成矿带的速度特征进行了综合研究,结果表明:低速背景中的高速异常,是天然气水合物赋存的重要特征;高速异常体一般呈平行于海底的带状分布;在高速异常的内部,速度也是不断变化的。一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,反映在水合物矿带内部,水合物饱和度由矿体中心向边缘逐渐降低的特征。本文的研究成果进一步表明高精度速度分析不仅可以帮助寻找水合物矿点,还可以进一步判定水合物的富集层位。

关键词 Jason 反演技术 天然气水合物 速度分析

1 前言

天然气水合物是在低温、高压环境下,由水的冰晶格架及其间吸附的天然气分子组成的笼状结构化合物,广泛分布于海底和永久冻土带。温度和压力是天然气水合物形成和保存最重要的因素(王宏斌等,2004)。针对天然气水合物的野外调查及研究表明:高分辨率的地震勘探方法是天然气水合物调查评价中行之有效的方法。地震反演技术一直是地震勘探中的一项核心技术,其目的是用地震反射资料反推地下的波阻抗、速度、孔隙度等参数的分布,从而估算含天然气水合物层参数,预测天然气水合物分布状况,为天然气水合物勘探提供可靠的基础资料。常用的地震反演技术有Jason、Strata、Seislog和ISIS等,其中Jason反演技术在含天然气水合物层预测中因其分辨率高而得到广泛推崇,它主要由有井约束和无井约束两种方法组成(廖曦等,2002)。

速度异常是判断天然气水合物是否赋存的重要条件之一。结合BSR(Bottom Simulating Reflector)特征、波形极性特征、振幅特征以及AVO特征等目前已成为判断是否存在天然气水合物层主要手段(史斗等,1999)。大量的测试数据显示:水合物的速度与冰的速度较为接近,而比水高。与含水或含游离气沉积层相比,含水合物沉积层的密度降低,声波速率增大,含水合物层的地层速度往往比一般的地层速度高,含水合物沉积层的下部由于充填了水或气,而使水合物底界面出现速度负异常。因此,地层中速度反转是水合物赋存的一个地球物理标志。含水合物地层的声波速度与水合物的含量有关,水合物含量越高,其声波速度越高。从速度方面看,BSR是上覆高速的含水合物地层与下伏较低速的含水层或含气层之间的分界面。通常,海洋中浅层沉积层的地震纵波速度为1600~1800m/s,如果存在水合物,地震波速度将大幅提高,可达1850~2500m/s,如果水合物层下面为游离气层,则地震波速度可以骤减200~500m/s。因此,在速度剖面上,水合物层的层速度变化趋势呈典型的三段式,即上下小、中间大的异常特征(张光学等,2000)。西伯利亚麦索雅哈气田的资料表明,在原为含水砂层内形成水合物之后,其纵波的传播速度会从1850m/s提高到2700m/s;而在胶结砂岩层,这种速度会从3000m/s提高到3500m/s。深海钻探计划的570站位的测井结果表明,由含水砂岩层进入含水合物砂岩层时,密度由1.79g/cm3降低到1.19g/cm3,声波传播速度从1700m/s提高到3600m/s,且电导率剧烈下降。

Cascadia海域ODP889站位的VSP测井资料反映水合物底界为强烈的负速度界面,速度从水合物沉积物层的1900m/s陡降到含游离气层的1580m/s,由于VSP测井为地震测井,受钻井因素的影响较少,因此认为VSP测井真实地反映了水合物沉积层底界的速度变化(陈建文等,2004)。

国土资源部广州海洋地质调查局在2001~2004年在南海北部陆坡进行10000多公里的天然气水合物高分辨地震调查。本研究利用Jason反演技术,通过对南海北部陆坡区的地震速度资料的精细分析,在已圈定BSR分布范围的基础上研究陆坡区各沉积层的速度特征,最后对速度值与水合物的关系进行了分析和探讨。

2 方法原理

纯天然气水合物的密度(0.9g/cm3)和海水密度相近,而游离气的含量又十分有限,这就决定了产生BSR的波阻抗差主要由速度造成。速度反演技术的特点是在无井约束时,以地震解释的层位为控制,对所有的地震同相轴来进行外推内插来完成波阻抗反演,这样就克服了地震分辨率的限制,最佳的逼近了测井分辨率,同时又使反演结果保持了较好的横向连续性。速度反演技术的主要原理是:①通过最大的似然反褶积求得一个具有稀疏特性的反射系数系列;②通过最大的似然反演导出波阻抗;③通过波阻抗计算速度。该方法的主要优点是能获得宽频带的反射系数,是一种基于模型的反演,具有多种建模方法,对所建模型进行比较分析,并使地质模型更趋合理,反演结果更加真实可靠(郝银全等,2004)。

波阻抗反演方法的出发点是认为地下的反射系数是稀疏分布的,即地层反射系数由一系列叠加于高斯背景上的强轴组成。具体反演是从地震道中,根据稀疏的原则抽取反射系数,与子波褶积生成合成地震记录,利用合成地震记录与原始地震道的残差修改反射系数,得到新的反射系数序列,然后再求得波阻抗。其具体步骤是:

假设地层的反射系数是较大的反射界面的反射和具有高斯背景的小反射叠加组合而成的,根据这种假设导出一个最小的目标函数(安鸿伟等,2002):

南海地质研究.2006

式中:R(K)为第一个采样点的反射系数,M为反射层数,L为采样总数,N为噪音变量的平方根,λ为给定反射系数的似然值。

最大的似然反演就是通过转换反射系数导出宽带波阻抗的过程。如果从最大的似然反褶积中求得的反射系数式R(t),则波阻抗:

Z(i)=z(i-1)×(1+R(i))/R(1-i) (2)

利用波阻抗和速度的关系式:

v=Z(i)/ρ (3)

即可得到速度值。其中,ρ为地层密度,可从区域测井资料结合该测线重力资料反演求取。

在上述过程中为了得到可靠的反射系数估算值,可以单独输入波阻抗信息作为约束条件,以求得最合理的速度模型。一方面,速度反演结果是一个宽频带的反射序列和波阻抗及速度数据,同时加入了低频分量,使反演结果更能正确反映速度变化规律;另一方面,它有多种质量控制方法,具体表现为监控子波的选取、同相轴的连续追踪、反演结果准确性的判断和提供多种交汇显示的相关性分析。所以利用速度反演可对地震剖面上任一相位进行速度反演,在每一个CDP点都可得到任一个同相轴速度数据,并利用二维的反射波的速度层析成像反演方法得到高度连续的速度剖面,如果地震测线足够密,还可利用三维速度反演得到速度体图像。

3 实现过程

3.1 初始模型的确立

在地质规律的指导下,利用地震和测井资料开展沉积特征分析和沉积旋回划分;建立岩石-电性关系,进行砂层组和单砂层对比;在地震剖面上提取各含油砂层组反射波属性,建立地震属与矿体的关系,实现地震-测井综合预测矿体平面分布厚度,开展层间矿体组外推预测;建立初始速度场;在地震属性约束下开展地震反演,反演层间小层矿体厚度。细分层反演层位的标定正确与否直接影响反演结果的精度。因此,在反演过程中对子波提取、能谱特点、信噪比、频谱及反射系数的研究至关重要(闫奎邦等,2004)。技术路线流程如图1所示:

3.2 初始速度场的获得

初始速度场的获得首先要对速度谱进行解释,速度谱的解释和取值是否合理,将直接影响均方根速度的计算精度。具体步骤如下:

1)速度谱的解释先从地质条件简单、反射层质量好、能量团强、干扰少的剖面段开始,绘制叠加速度-反射时间曲线,并逐渐向外扩展;

2)结合地震剖面的反射特征,判断速度极值点是否正确,并选择读取能量团最大的极值点。排除干扰波能量团,从而求得有效波的叠加速度;

3)对相邻速度谱进行比较,通过比较速度谱曲线的形状、相同反射层的速度极值等方法予以检查和修改。

4)每隔40个CDP拾取一组数据,利用地震剖面上的反射倾角数据对它们进行校正,便可得到均方根速度(梁劲等,2006)。

图1 速度反演技术线路流程图

Fig.1 The flow chart of the velocity inversion of technical route

3.3 子波的提取

子波提取时,要使能量集中于子波的主瓣,与地震子波形态吻合。如果所提子波近于零相位,则从波峰向两侧能量衰减较快,波峰两侧波形对称;在子波的能谱特征分析,要使能量都集中在地震波的主频范围内;有井资料时,要对井资料都作了子波与地震波自动关联质量控制。保证子波能谱与地震波能谱相吻合,是反演中较为重要的一方面,子波能谱的峰值与地震波主频的能谱峰值相吻合。首先了解合成记录与地震记录之间的偏差。通过合成记录与地震记录之间的偏差分析,对Jason反射系数偏差、能谱偏差进行进一步的校正,使合成记录与地震记录之间的偏差减小。然后通过反射系数与地震资料之间偏差分析,采取相应的手段校正,使地层与合成记录反射系数相吻合。再进行信噪比分析,使反演处理后的信噪比得到最大限度的提高。通过一系列质量控制手段,使各油层合成记录与地震记录的标定精度得到了较大的提高。

关于速度反演可信程度,不能完全由反演方法确定,关键在于获取地震记录的质量和反演前处理流程的振幅保真度。另一个影响因素是数值模拟结果应当是比较准确的,这与计算方法有关,也与子波拾取和地质构造模型有关。至于反演结果的灵敏度,主要由拟合误差值和收敛速度来判断。如果给定的初始模型正确,即与实际地质结构一致,则拟合的误差较小且收敛速度快。本文工作由于受实际情况限制,没有实际的测井资料验证,因此反演所得速度的准确性和精度会受到一定程度的影响。

4 速度剖面特征

运用多种特殊地震成像综合分析,是天然气水合物地震资料解释的关键技术。目前一般采用识别BSR、振幅空白带、波形极性反转、速度异常、波阻抗面貌和AVO等天然气水合物地震相应特征来综合分析沉积物中是否含有水合物。高精度的层速度分析可帮助判定水合物的富集层位,速度及振幅异常结构是水合物与下伏游离气共同作用形成的特殊影像,剖面上表现为“上隆下坳”结构,多层叠合构成一明显的垂向“亮斑”这一特殊成像结构在未变形的水合物盆地内较适用于寻找水合物矿点,并可据此定量估算水合物盆地内水合物的数量,分析BSR上下的详细速度结构,是水合物地震资料综合解释的重要手段(张光学等,2003)。

图2 南海北部陆坡测线A道积分剖面

Fig.2 Trace integration profile of the line A in north slope of the South China Sea

图2是南海北部陆坡测线A的地震反射道积分剖面,从图中可以看出,该剖面中部及右下角距海底大约350ms处出现一强振幅反射波,大致与海底反射波平行,与地层斜交,BSR特征明显。在波形极性方面,海底反射波和BSR都表现为成对出现的强振幅双峰波形特征,海底反射波表现为蓝红蓝特征,而BSR表现为红蓝红特征,这表明相对于海底,BSR显示出负极性反射同相轴,即所谓的极性反转(与海底反射相反)。反射波的极性是由反射界面的反射系数决定的,而反射系数则与界面两侧的波阻抗差有关。实际上,海底和BSR都是一个强波阻抗面,海底是海水和表层沉积物的分界面,上部为低速层,下部为相对高速层,反射系数为正值;BSR是含水合物层与下部地层(或含气层)的分界面,上部为高速层(水合物成矿带是相对高速体),下部为相对低速层(如含游离气,则速度更低),反射系数为负值,因此造成了BSR和海底反射波的极性相反现象(沙志彬等,2003)。图3是用速度反演法反演出来的纵波速度剖面,该速度剖面明显显示出一近似平行于海底的相对高速地质体,其位置恰好在BSR上方。高速地质体的纵波速度大约在2000~2400m/s,其上面的低速层的纵波速度大约在1500~1800m/s,而下面的低速层的纵波速度大约在1500~1900m/s,没有明显的游离气存在特征,但根据其高速地质体特征、BSR以及波形极性反转分析,可以认为南海北部陆坡测线A的相对高速地质体极可能是水合物成矿带。

图3 用速度反演法计算的南海北部陆坡测线A纵波速度剖面

Fig.3 P velocity profile of the line A in north slope of the South China Sea computed by velocity inversion

由图3可见,水合物成矿带内部速度是变化的,表明水合物分布不均匀,呈平行于海底的带状分布,中心速度最高,由中心到边缘速度逐渐降低。海底以下有3个近似平行海底的低速和高速带:①海底与高速体之间的相对低速带,为水饱和带;②水合物成矿带;③水合物成矿带下的低速带。水合物成矿带下面的低速带在速度剖面上没有明显的低速特征,由此推断水合物成矿带下可能不含游离气,或者是气体的饱和度很低。

5 结论

水合物的生成除了需要一定的温度和压力条件外,还需要大量的碳氢气体和充足的水。这就需要地层具有较高的孔隙度和渗透率。未固结沉积岩的孔隙度很高,渗透率大,具备水合物生成的物理条件。具备这种特征的未固结沉积岩的地震波速度较低,而含水合物地层的地震波速度增大。这就形成了水合物成矿带作为低速背景中的高速地质体特征。另外,水合物的生成受温度和压力控制,一般情况,等温面和等压面近似平行于海底,因此低速背景中近似平行于海底的相对高速地质体是水合物成矿带的特征(刘学伟等,2003)。

通过对南海北部陆坡A测线纵波速度的计算,并且结合BSR和振幅空白带识别以及波形极性反转等多种特殊地震成像进行综合分析,我们可以进一步了解水合物成矿带的速度特征:揭示水合物成矿带的高速异常一般呈平行于海底的带状分布,在高速异常的内部,速度也是不断变化的,一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,该现象反映在水合物矿带内部,水合物分布并不均匀,水合物饱和度由矿体中心向边缘逐渐降低。分析BSR上下的详细速度结构,是水合物地震资料综合解释的重要手段。高精度速度分析可帮助判定水合物的富集层位,较适用于寻找水合物矿点,并可据此估算水合物资源量。

参考文献

安鸿伟,李正文,李仁甫,等.2002.稀疏脉冲波阻抗反演在XY油田开发中的应用.石油物探,41(1):56~60

陈建文,闫桂京,吴志强,等.2004.天然气水合物的地球物理识别标志.海洋地质动态,6:9~12

郝银全,潘懋,李忠权.2004.Jason多井约束反演技术在油气储层预测中的应用.成都理工大学学报,31(3):297~300

梁劲,王宏斌,郭依群.2006.南海北部陆坡天然气水合物的地震速度研究[J].现代地质,20(1):123~129

廖曦,马波,沈浩,等.2002.应用Jason软件进行砂体及含气性预测.天然气勘探与开发,25(3):34~42

刘学伟,李敏锋,张聿文,等.2005.天然气水合物地震响应研究——中国南海HD152测线应用实例.现代地质,19(1):33~38

沙志彬,杨木壮,梁金强,等.2003.BSR的反射波特征及其对天然气水合物识别的应用.南海地质研究,15(1):55~61

史斗,郑军卫.1999.世界天然气水合物研究开发现状和前景.地球科学进展,14:330~339

王宏斌,梁劲,龚跃华,等.2005.基于天然气水合物地震数据计算南海北部陆坡海底热流.现代地质,19(1):67~73

闫奎邦,李冬梅,吴小泉.2004.Jason反演技术在岩性识别中的应用.石油物探,43(1):54~58

张光学,黄永样,陈邦彦,主编.2003.海域天然气水合物地震学.北京:海洋出版社

张光学,文鹏飞.2000.南海甲烷水合物的地震特征研究,首届广东青年科学家论坛论文集,中国科学技术出版社

The Application of Jason Inversion Technology in Velocity Analysis of Gas hydrate

Liang Jin1 Wang Hongbin1,2 Liang Jinqiang1

(1.Guangzhou Marine Geological Survey,Guangzhou,5107602.China University of Geosciences(Beijing),Beijing,100083)

Abstract:The P velocity of A seismic profile in the north slope of the South China Sea were calculated by Jason inversion method.The velocity characterostic of the gas hydrate bed was researched in detail based on the calculated result and the information of gas hydrate existing including BSR,amplitude blanking and polarity reversion of the waveform.Research shows that:The abnormity of higher velocity in the background of lower velocity is an important characteristic of gas hydrate existing;The abnormity of higher velocity which distribute as a belt usually parallel to the seafloor;The velocity changes gradually at the inner of the abnormity of higher velocity with the highest velocity at the center of the abnormity whereas the lowest velocity at the margin of it,which suggests that the saturation of gas hydrate decreases gradually from the center to the margin.The result that mentioned above suggest that high resolution velocity analysis not only help to search the hydrate spot but also help to estimate the rich layer of gas hydrate.

Key Words:Jason Inversion Technology Gas hydrate Velocity Analysis

城市燃气企业财务风险及应对策略

西安石油大学石油与天然气工程学科是西安石油大学下属的一个在职研究生学科,西安石油大学大学设有石油工程学院、地球科学与工程学院、电子工程学院、机械工程学院、材料科学与工程学院、计算机学院、化学化工学院、理学院、经济管理学院、人文学院、外国语学院、继续教育学院 ( 职业技术学院)、国际教育学院、思想政治理论教学科研部、音乐系、体育系16个院系部。西安石油大学石油与天然气工程学科研究生培养方案如下:

一、石油与天然气工程学科概况

“油气田开发工程”、“油气井工程”、“油气储运工程” 等学科分别于1990年、1994年和2001年获得硕士学位授权,2006年获得“石油与天然气工程”一级学科的硕士学位授权。2002年与2003年分别获得工程硕士与联合培养博士学位授权。在石油钻采化学与资源环境保护、油气田开发与渗流理论及应用、油气井工程测量控制与信息应用技术、油气储输及安全技术等方面形成了鲜明特色。

本学科现有教授21人,副教授23人,博士学位教师38人。其中省“三秦学者”、“百人计划”和“教学名师”等6人,2007年被评为省级教学团队。本学科为陕西省重点学科,拥有国家、省部级重点实验室和工程中心等9个。“十一五”期间承担国家和省部级科研项目292项,科研经费共计1.1亿元。

二、石油与天然气工程培养目标

培养学生品行优良,具有良好的科学道德、敬业精神和合作精神;应掌握本学科坚实的基础理论和系统的专业知识,了解本学科发展趋势及技术研究前沿;能够运用专业知识、数学物理/化学方法、计算机技术等多种综合手段,分析和解决石油与天然气工程实践中存在的问题。具有从事科学研究工作或从事专门技术工作的能力。熟练掌握一门外语,具有实践能力、创新精神、国际视野与严谨求实的科学态度和作风。

三、石油与天然气工程培养年限

学习年限一般为3年,最长不超过4年。

四、二级学科及特色研究方向

本学科的二级学科包括:油气井工程、油气田开发工程、油气储运工程、海洋油气工程、非常规油气开发工程。

本学科形成了4个稳定的研究方向。

1. 石油钻采化学与资源环境保护

本方向通过油气田开发工程、油气田应用化学与工程、环境化学与工程理论与技术交叉融合,进行化学作用机理研究及化学添加剂体系的开发与应用,为提高油气采收率、保护储层与保护环境提供技术支撑。

2. 油气田开发与渗流理论及应用

本方向主要研究复杂油气藏油气渗流特征和物理/化学法采油技术方法;建立油气田开发综合智能信息决策系统理论;将爆炸与燃烧、大功率电磁波等军工和高新技术应用于采油气工程;研究物理(电磁、振动、高能气体)—化学耦合采油增产新理论、新方法和新技术。

3. 油气井工程测量控制与信息应用技术

本方向主要研究油气井工程测量控制技术(特别是随钻测量和导向钻井控制技术);对油气井信息进行实时采集、传输和处理,并与油气井测控技术相结合,实现油气井工程的动态监测、优化、控制以及提高决策与管理水平。

4. 油气储输及安全技术

本方向主要研究油气集输、储运工艺技术和完整性分析技术等。

五、课程设置、学时及学分规定

硕士研究生课程学习实行学分制,规定总学分(含实践环节)为32学分。课程结构设置为学位课、非学位课和必修环节。课程学习每18学时记1学分,学生必须修满32个学分。

六、培养方式与方法

1.研究生培养要德、智、体、美全面发展。政治理论学习应与思想政治教育相结合,积极参加公益劳动和体育活动。

2.研究生培养要理论联系实际,要深入掌握本学科专业的基础理论和专业知识,又要掌握教学、科研的方法,具备从事科学研究和独立担负专门技术工作的能力,要注意拓宽专业面。

3.在教学上,注重培养学生独立工作的能力,科学思维方法和创造性。教学的形式可以多样,应创造条件让研究生参加学术交流活动,了解本专业科技发展动向。

4.硕士研究生培养实行导师负责制。导师根据学位条例和培养方案,对每一位研究生制定出切实可行的培养计划。导师应教书育人,对研究生的政治思想、业务学习、工作科研等方面要定期检查,认真指导研究课题的进行。要注意培养研究生独立工作能力、创造能力和进取精神。

七、学位论文

论文工作是使研究生在科研方面受到较全面的基本训练,培养独立担负专门技术工作的能力。论文工作包括阅读文献、开题报告及撰写论文等。

1. 文献阅读和综述报告

在进入课题前,学生应查阅有关本研究方向和领域发展状况的国内外学术论文和技术报告,阅读数量不少于50篇(国外至少20篇),并完成一份综述报告(3000-5000字)。

2. 学位论文选题和开题报告

学位论文选题来源于应用课题或现实问题,有明确的职业背景和应用价值,并有一定的工作量。要能体现学生综合应用理论、方法和技术研究并解决工程技术问题或社会实践问题的能力。

开题报告选题应属于本学科范围。开题报告应该包括论文开题依据、研究内容、技术路径、创新点,以及论文完成拟提交的最终成果,由包括指导教师在内的论证小组给出评定意见。第五学期进行论文中期检查。

3. 学位论文质量要求

学位论文工作达到在开题中规定的目标,由学生独立完成。学位论文要求文句简练、通顺、图表清晰、数据可靠、撰写规范、严格准确地表达研究成果,实事求是地表述结论。

4. 学位论文评阅和答辩

需按照《西安石油大学硕士学位授予工作细则》执行。

考研政策不清晰?同等学力在职申硕有困惑?院校专业不好选?点击底部官网,有专业老师为你答疑解惑,211/985名校研究生硕士/博士开放网申报名中: style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">石油天然气关键参数研究与获取

城市燃气企业财务风险及应对策略

 广义的财务风险是指企业的财务系统中客观存在的、由于各种无法预测和难以控制的因素,使企业实际的财务收益和预期财务收益发生背离,因而具有蒙受损失的机会或可能。下面是我为大家带来的城市燃气企业财务风险及应对策略,欢迎阅读。

 一、企业财务风险的含义

 广义的财务风险是指企业的财务系统中客观存在的、由于各种无法预测和难以控制的因素,使企业实际的财务收益和预期财务收益发生背离,因而具有蒙受损失的机会或可能。狭义的财务风险是企业因负债经营可能导致企业丧失偿债能力和股东收益的变动。企业财务风险是指企业财务活动过程中由于各种不确定因素的影响,使企业财务收益与预期收益发生偏离,而造成损失的机会或可能。笔者认为分析企业的财务风险应从广义的财务风险入手,使其更具有实际意义。

 二、城市燃气企业财务风险成因分析

 城市燃气企业的主要业务包括对城市燃气管网进行投资建设、对城市居民和工商业用户供应天然气,对燃气设施进行运营维护等。近年来城市燃气企业新增投资和设备维护的投入资金巨大,大部分以融资借贷方式取得,造成资产负债率急剧上升,偿债风险和还本付息压力巨大。基于上述原因,城市燃气企业所存在的财务风险可分为以下方面。

 1、政策风险

 政策风险是国家政策对企业资本运营和经营活动产生的风险。城市燃气行业面对众多居民用户,涉及到国计民生,同时城市燃气企业的经营需要政府授予特许经营权等问题,所以燃气企业的经营发展必然和国家政策要求有密切关系,政策的变化可能会对企业产生不利影响。如政府政策变化将特许经营范围分割给其他企业,会使城市燃气企业造成如流失大型客户的经济损失。

 2、价格风险

 受国际政治、经济、军事等多种因素影响,全球天然气产品市场波动较大,进而直接或间接的影响国内天然气价格。同时,天然气的供应价格受到井口价格、生产成本和管输费用的影响,使城市燃气企业面临进气成本上涨的风险。由于天然气供应涉及国计民生,销售价格的确定需经过物价部门的审核及价格听证等复杂程序,所以城市燃气企业需承担进气成本上涨而销售价格无法及时调整所产生的经济损失。

 3、自然风险

 城市燃气行业属于典型的高危行业,目前燃气设备受外力损害的现象较为普遍,如燃气管网的自然腐蚀、燃气管网和设备的第三方破坏等。如果由于自然或人为原因,发生燃气管网发生安全事故,造成社会财产损失甚至造成人员伤亡,则会给城市燃气企业带来巨大的赔偿损失。

 4、筹资风险

 筹资风险也称融资风险,是指企业因借入资金而给企业财务成果带来的不确定性以及不能支付本息的风险。城市燃气行业属于微利行业,自有资金匮乏、偿债能力不足。加上城市燃气企业具有投资大、设备维护费用高等特点,企业必须通过外部融资的方式来满足经营的需要,从而会产生利息上调的支付风险,以及由于资金周转不灵产生的偿债风险。

 5、投资风险

 投资风险是指企业在投资活动中由于受各种难以预计或控制的因素的影响可能给企业投资预期收益率带来的不确定性。投资风险是由于投资决策失误和投资环境恶化所引起的。城市燃气企业具有投资金额大、建设周期长的特点,极其容易造成由于决策失误而使投资项

 目利用率较低甚至闲置,造成投资浪费,产生投资风险。

 6、资金管理风险

 资金管理风险包括资金回收风险和现金收款风险。资金回收风险是指由于转化时间和金额的不确定而造成的风险。天然气销售是城市燃气企业的主营业务之一,销售模式一般是以一个月、十天或一周为周期性的抄表结算后收款,从而会产生天然气销售后资金无法按时收回的风险。城市燃气企业由于经营的特殊性,在收款过程中涉及到大量的营业网点现金收款的情况,存在着现金遗失、挪用、偷盗等风险。

 三、城市燃气企业应对财务风险的策略

 1、树立风险管理意识,全员参与风险防范

 首先要认识到城市燃气企业在经营过程中所面临的各种财务风险是客观存在的,在做各项经营活动之前需充分考虑潜在的风险因素。同时应逐步建立全员参与风险防范的意识,增强企业全体员工风范风险、识别风险和分析风险的能力,不断进行必要的业务培训,在工作中时刻做好应对风险的'准备。为最大限度降低财务风险,企业管理者应加强科学决策和集体决策,对防范财务风险的重要责任要有清醒的认识,避免出现经验决策等主观决策。

 2、积极采取有效措施,应对政策相关风险

 政策风险和价格风险对于城市燃气企业来说是客观存在的,同时也是很难控制和规避的,其中存在着很多不可控的因素。城市燃气企业应针对此类风险采取相应措施,积极与政府相关职能部门建立良好的沟通渠道,提出依据充足、理由充分的陈述,最大限度地争取政府对于企业发展的充分支持,在政策允许的范围内争取最适合企业发展的有利政策,确保公司的利益不受损失。

 3、加强安全管理,确保管网安全运行

 城市燃气企业应将安全管理作为企业的第一要务,建立健全安全管理体系,确保安全管理工作万无一失。在日常工作中加强对于燃气设备和管网的巡查和维护,发现问题及时处理。对于达到一定使用年限的管网和设备需要进行集中隐患排查,投入专项资金对安全隐患进行整改。安全主管部门应加强对出现的安全隐患及非责任事故进行统计分析,总结经验和教训,确保管网安全运行。

 4、不断完善财务管理制度,提高制度的执行力

 适应企业发展要求的财务管理制度是现代企业规范化管理必不可少的重要组成部分,也是防范企业财务风险的客观要求。城市燃气企业面对各种各样的财务风险,为了更好地控制和规避风险,企业需要不断根据实际情况健全和完善财务管理制度,使财务管理制度内容更加科学,条文更加严密明了,在执行过程中更具可操作性,更能够发挥防范财务风险的作用。建立起财务管理制度体系后,应严格执行管理制度的各项要求,不断提高对财务管理制度的执行力,对违反财务管理制度的行为予以必要的处罚,使财务管理制度真正成为防范风险的重要手段。

 5、建立企业预警机制,构建防范财务风险的屏障

 财务风险预警是在财务风险发生之前,捕捉和监视各种细微的迹象变动,度量某种状态偏离预警线的强弱程度,并适时发出预警信号,以利于预防和为采取适当对策争取时间。因此,企业应建立实时、全面、动态的财务预警系统,对自身在经营活动中的潜在风险进行实时监控。城市燃气企业的核心业务是天然气的销售,其中工商业用户的销售比例较高,对于大型工商业用户的气款回收是城市燃气企业控制资金回收风险的重要环节,所以建立工商业用户气款收缴情况的预警机制显得尤为重要。随时跟踪、掌握工商业用户的相关信息,发现不良苗头及早采取相应措施,尽最大可能回收气款,减少损失。

 6、对财务风险作出恰当处理,合理应对财务风险

 财务风险的处理是风险的事后控制,城市燃气企业应坚持谨慎性原则,针对财务风险建立相应的风险基金,即在损失发生以前以预提方式或其他形式建立一项专门用于防范风险损失的基金。在损失发生后,或从已经建立了风险基金的项目中列支,或分批进入经营成本,尽量减少财务风险对企业正常活动的干扰。通过行之有效的处理,对财务风险作出合理应对,最大限度避免财务风险对企业正常经营的影响。

 总之,在企业经营活动中的各种财务风险是客观存在的,城市燃气企业应不断增强风险意识,以积极的态度把握财务风险的运行规律,建立健全企业财务风险控制机制,加强企业财务风险管理,规范企业财务管理制度,最大限度地控制和规避财务风险,实现企业的可持续稳健发展。

;

奥陶系风化壳产层天然气的来源分析

评价参数直接影响评价方法的有效性,不同类型的参数作用不同。有效烃源岩有机碳下限、产烃率图版、运聚系数是成因法的关键参数;最小油气田规模对统计法计算结果有较大影响;油气资源丰度是应用类比法的依据,由已知区带的油气资源丰度评价未知区带的资源丰度;可采系数是将地质资源量转化成可采资源量的关键参数。

(一)刻度区解剖

1.刻度区的定义

刻度区解剖是本次资源评价的特色之一,也是油气资源评价的重要组成部分。刻度区解剖的目的是通过对地质条件和资源潜力认识较清楚的地区的分析,总结地质条件与资源潜力的关系,建立两者之间的参数纽带,进而为资源潜力的类比分析提供参照依据。

刻度区是为取准资源评价关键参数,以保证资源评价的客观性而选择的满足“勘探程度高、资源探明率高、地质认识程度高”三高要求的三维地质单元。刻度区可以是一个盆地(凹陷)、一个油气运聚单元、一个区带、一个成藏组合、一个层系或一个二级构造带等。为了正确和客观认识地质条件和资源潜力,刻度区的选取在考虑“三高”条件的基础上,应尽量考虑不同地质类型的综合,这样可以更充分体现油气资源丰度与地质因素之间的关系。

2.刻度区解剖内容与方法

刻度区解剖主要围绕油气成藏条件、资源量及参数三个核心展开,剖析三者之间的关联规律和定量关系。

(1)成藏特征和成藏主控因素分析。成藏特征和成藏主控因素分析实质上是对选择的刻度区进行成藏特征总结,精细刻画出成藏的定性、定量的主控因素与参数,便于评价区确定类比对象。在一个含油气盆地、含油气系统、坳陷、凹陷的成藏规律刻画中,其成藏特征差异大,故一般最好选择以含油气系统(或坳陷)及其间的运聚单元作为对象,更便于有效的类比应用。油气运聚单元是盆地(凹陷)中具有相似油气聚集特征的独立的和完整的石油地质系统,是以盆地(凹陷)的油气聚集带为核心,并包含为该油气聚集带提供油气源的有效烃源岩。油气运聚单元是有效烃源岩、油气运移通道、有效储集层、有效盖层、有效的圈闭等要素在时间和空间上的有机组合。一个油气运聚单元可以有多个有效烃源岩体和烃源岩区为其供烃,但同一个油气运聚单元的油气聚集特征是相似的。一个油气运聚单元可以只包含一个油气成藏组合,也可以包含在纵向上叠置的多个油气成藏组合。因此刻度区地质条件的评价与定量刻画就是按照运聚单元→成藏组合→油气藏的层次路线综合分析烃源条件、储层条件、圈闭条件、保存条件以及配套条件等油气成藏条件。盆地模拟是地质评价流程中的一个重要组成部分,其作用主要体现在三个方面:其一是通过盆地模拟反映流体势特征,进而确定油气运聚单元的边界;其二是提供烃源参数,如生烃强度、生烃量、有效烃源岩面积等;其三是通过关键时刻的获取来反映油气成藏的动态作用过程。

(2)油气资源量确定。刻度区资源量计算与一般意义上的资源量计算稍有不同,正是由于刻度区的“三高”背景,特别是选定的刻度区探明程度越高越好,计算出的资源量更准确有利于求准各类评价参数。在本次刻度区解剖研究中,主要采用了统计法来计算刻度区的资源量,统计法中包括油藏规模序列法、油藏发现序列法、年发现率法、探井发现率法、进尺发现率法以及老油田储量增长法,不同方法估算出的资源量采用特尔菲加权综合。盆地模拟在计算生烃量方面技术已经比较成熟,因此刻度区(运聚单元)的生烃量仍由盆地模拟方法计算。

(3)油气资源参数研究。通过刻度区解剖,建立了参数评价体系和预测模型,获得了地质条件定量描述参数、资源量计算参数和经济评价参数,如运聚系数、资源丰度等关键参数。从刻度区获得的资源量与生油量之比可计算出运聚系数,刻度区的资源量与面积之比可获得单位面积的资源丰度,还可得到其他参数等。由于盆地内坳陷(凹陷)内各单元成藏条件差异,求得的参数是不同的,故细分若干运聚单元,求取不同单元的参数,这样用于类比区会更符合实际。

3.刻度区研究成果与应用

通过刻度区解剖研究,系统地获得运聚系数、油气资源丰度等多项关键参数,为油气资源评价提供各类评价单元类比参数选取的标准,保证评价结果科学合理。如中国石油解剖的辽河坳陷大民屯凹陷级刻度区,通过对其烃源条件、储层条件、圈闭条件、保存条件以及配套条件五方面精细研究,获得了22项量化的成藏条件的系统参数。根据大民屯凹陷内划分的六个运聚单元,分别计算各单元的生油量和资源量,直接获得六个单元的运聚系数。同时计算出各运聚单元单位面积的资源量,获得不同成藏条件下的资源丰度参数(表4-5)。

表4-5 大民屯凹陷刻度区解剖参数汇总表

在中国石油128个刻度区的基础上,各单位根据评价需要,又解剖了一定数量的刻度区。其中,中国石油利用已有刻度区128个,新解剖刻度区4个,共应用132个;中石化新解剖42个;中海油新解剖4个;延长油矿新解剖3个。各项目共应用了181刻度区,这些刻度区涵盖了我国主要含油气盆地中的大部分不同类型的坳陷、凹陷、运聚单元和区带,基本满足了不同评价区的需要。各种类型刻度区统计见表4-6。

表4-6 各种类型刻度区统计表

(二)有效烃源岩有机碳下限

有效烃源岩有机碳下限是指烃源岩中有机碳含量的最小值,小于该值的烃源岩生成的烃量不能形成有规模的油气聚集。有效烃源岩有机碳下限是确定烃源岩体积的主要参数,直接影响生烃量的计算结果。

在大量烃源岩样品分析化验和有关地质资料研究基础上,明确了不同岩类有效烃源岩有机碳下限标准。陆相泥岩有效烃源岩有机碳下限为0.8%,海相泥岩为0.5%,碳酸盐岩为0.2%~0.5%,煤系源岩为1.5%。例如,陆相泥岩TO C与S1+S2关系表明,S1+S2在TO C为0.8%时出现拐点,有效烃源岩有机碳下限定为0.8%;碳酸盐岩气源岩残余吸附气量与有机碳关系表明,残余吸附气量在有机碳为0.2%处出现拐点,有效烃源岩有机碳下限定为0.2%(图4-1、图4-2)。

图4-1 陆相泥岩TOC与S1+S2关系图

图4-2 碳酸盐岩气源岩残余吸附气量与有机碳关系图

对于勘探实践中已经发现油气藏,但烃源岩有机碳含量未达统一下限的盆地,根据实际情况可进行适当调整。如柴达木盆地柴西地区,在分析了大量烃源岩有机碳和S1+S2指标资料后,明确该区有机碳含量下限为0.4%时,即达到有效烃源岩标准,并被发现亿吨级尕斯库勒大油田的勘探实践所证实。在渤海湾盆地评价过程中,建立起相对统一的有效烃源岩丰度取值下限标准:碳酸盐岩气源岩丰度下限取0.2%,碳酸盐岩油源岩丰度下限取0.5%,湖相泥岩丰度下限取1.0%。

有效烃源岩有机碳下限的基本统一,保证了生烃量计算标准的相对一致和全国范围内的可比。

(三)产烃率图版

烃源岩产烃率图版是用盆地模拟方法计算烃源岩生烃量和资源量的关键参数。产烃率图版一般采用烃源岩热模拟实验方法获得。

1.液态烃产率图版

利用密闭容器加水热模拟实验方法,对中国陆相盆地不同类型烃源岩进行了热模拟实验。模拟实验所用样品取自松辽、渤海湾等10个盆地,包括侏罗系、白垩系和古近系的湖相泥岩、煤系泥岩和煤3大类烃源岩。其中湖相泥岩烃源岩的有机质类型包括Ⅰ型、Ⅱ1型、Ⅱ2型和Ⅲ型,煤系泥岩烃源岩的有机质类型包括Ⅱ2型和Ⅲ型,煤烃源岩的有机质包括Ⅱ1型、Ⅱ2型和Ⅲ型。根据模拟实验结果,编制了不同类型烃源岩的液态烃产率图版(图4-3、图4-4、图4-5)。

图4-3 湖相泥岩烃源岩液态烃产率图版

图4-4 煤系泥岩烃源岩液态烃产率图版

图4-5 煤烃源岩液态烃产率图版

2.产气率图版

由于生物气生气机制与干酪根成气和原油热裂解气的生气机制不同,因此,其产气率与干酪根和原油裂解气产气率求取方式不同。

(1)生物气产气率。对生物气源岩样品在25℃~75℃的条件下进行细菌培养产生生物气,由此得到不同温阶下各类有机质的生物气产率。在模拟实验结果的基础上,结合前人的研究结果,分别建立了淡水环境、滨海环境和盐湖环境中不同类型有机质的生物气产气率图版及演化模式。

(2)干酪根和原油裂解气产气率。对于不同类型气源岩油产气率,国内外学者及一、二轮资源评价中已做过大量的工作。较多的实验是应用热压模拟方法对各种类型烃源岩进行产油及产气率实验,这种方法所计算的产气率包括了原油全部裂解成气的产率,亦即常说的封闭体系下源岩的产气率,所得到的天然气产率是气源岩的最大产气率。另一种求取气源岩产气率的方法是在开放体系下对源岩进行热模拟实验,各阶段生成的天然气和原油均全部排出源岩,原油不能在源岩中进一步裂解为天然气。这两种情况都是地质中的极端情况。但是实际的地质条件大多是半开放体系,在这种情况下,源岩生成的油既不能全部排出烃源岩,也不能完全滞留于源岩中。不同地质条件下亦即开放程度不同情况下源岩产气率如何计算?具体方法为:求得封闭和开放体系下相同类型源岩的产气率,将上述两种体系下的产气率图版(中值曲线)输入盆地模拟软件中,得出烃源岩层在不同渗透条件下产气率图版。

(四)运聚系数

运聚系数是油气聚集量占生烃量的比例,是成因法计算资源量的一个关键参数,直接影响资源量计算结果。运聚系数的确定方法包括运聚系数模型建立法和运聚单元成藏条件分析法。

1.运聚系数模型建立法

通过刻度区解剖,确定影响运聚系数的主要地质因素及其与运聚系数的相关关系。刻度区解剖研究表明,烃源岩的年龄、成熟度、上覆地层区域不整合的个数和运聚单元的圈闭面积系数等地质因素与石油运聚系数之间存在相关关系。依此建立地质因素与石油运聚系数之间关系的统计模型,包括双因素模型和多因素模型。双因素模型(相关系数为0.922)的地质因素选用烃源岩年龄和圈闭面积系数:

lny=1.62-0.0032x1+0.01696x4

多因素模型(相关系数为0.934)的地质因素选用烃源岩年龄、烃源岩的成熟度、区域不整合个数和圈闭面积系数:

lny=1.487-0.00318x1+0.186x2-0.112x3+0.02118x4

式中:y——运聚单元的石油运聚系数,%;

x1——烃源岩年龄,Ma;

x2——烃源岩成熟度(Ro),%;

x3——不整合面个数;

x4——圈闭面积系数,%。

2.运聚单元成藏条件分析法

依据刻度区提供的大量运聚系数,依盆地类型和影响运聚系数的主要地质因素,分类建立运聚系数取值标准与应用条件。在评价中,根据刻度区解剖结果,确定了油气运聚系数分级取值标准(表4-7)。在评价中得到了推广应用,取得了良好的效果。

表4-7 石油运聚系数分级评价表

(五)最小油气田规模

最小油气田规模是指在现有工艺技术和经济条件下开采地下资源,当预测达到盈亏平衡点时的油气田可采储量。最小油气田规模对统计法计算的资源量结果有较大影响。为此,中国石油天然气集团公司等三大石油公司和延长油矿管理局对最小油田规模进行了专门研究。

通过对不同油价、不同开发方式和未来可能技术条件下最小油气田规模研究,确定了不同地区的最小油气田规模的取值。在地理环境相对较好的东部地区,其勘探开发成本较低,最小油气田规模一般在10×104~30×104t,在地理环境相对较差的西部地区,其勘探开发成本高,最小油气田规模一般在50×104t以上,对于海域来说,油气勘探开发成本更高,最小油气田规模更大,一般在150×104~500×104t。

(六)资源丰度

油气资源丰度是指每平方公里内的油气资源量,是类比法计算资源量的关键参数。通过统计分析,建立了资源丰度模型和取值标准。

1.资源丰度模型

通过刻度区解剖,建立刻度区内评价单元油气资源丰度和相关地质要素之间的统计预测模型:

新一轮全国油气资源评价

式中:y——运聚单元的石油资源丰度,104t/km2;

x1——烃源岩生烃强度,104t/km2;

x2——储集层厚度/沉积岩厚度,小数;

x3——圈闭面积系数,%;

x4——不整合面个数。

2.资源丰度取值标准

通过统计不同含油气单元资源丰度的分布特点,结合地质成藏条件,总结出各类刻度区资源丰度的取值标准。

(1)不同层系资源丰度:古近系凹陷由于成藏条件优越,成藏时间晚,石油地质资源丰度一般大于20×104t/km2;中生代凹陷成藏时间相对较长,石油地质资源丰度相对较低,一般约为10×104t/km2;古生代凹陷由于生、储层时代老,多期成藏多期改造、破坏,预计其资源丰度更低。

(2)不同类型运聚单元资源丰度:中新生代断陷或坳陷盆地长垣型、潜山型和断陷型中央背斜构造型,石油地质资源丰度高,一般大于40×104t/km2;中新生代裂陷盆地、坳陷盆地边缘构造型和古近系缓坡构造型石油资源丰度次之,一般为10×104~30×104t/km2;中生代盆地岩性型和古生代压陷盆地的构造型石油资源丰度相对较低,一般小于10×104t/km2。

(3)不同区块或区带级资源丰度:区块或区带级石油资源丰度差异更大,从小于1×104t/km2到大于200×104t/km2。其中潜山型、岩性—构造型、披覆背斜区块资源丰度较高,一般大于50×104t/km2,最大可大于200×104t/km2。构造—岩性型、断裂构造型资源丰度一般为30×104~50×104t/km2。地层—岩性型、断鼻型以及裂缝型区块、资源丰度较低,一般小于30×104t/km2。

通过刻度区解剖标定多种成藏因素下评价单元的资源丰度,不但为广泛应用类比法计算资源量提供了可靠的参数,同时也摆脱了过去以盆地总资源量为基础,利用地质评价系数类比将资源量分配到各评价单元的做法,使类比法预测的油气资源量在空间位置上更准确,提高了油气资源空间分布的预测水平。

(七)可采系数

国外主要采用建立在类比基础上的统计法计算油气可采资源量,而我国第一轮、第二轮全国油气资源评价没有计算油气可采资源量。本轮评价开展的油气资源可采系数研究,通过可采系数将地质资源量转化为可采资源量,这在国内外油气资源评价中尚属首次。可采系数是指地质资源中可采出的量占地质资源量的比例,是从地质资源量计算可采资源量的关键参数。

可采系数研究与应用是常规油气资源评价的重要组成部分,主要目的是通过重点解剖、统计和类比分析方法,对我国油气资源可采系数进行研究,为科学合理地计算油气可采资源量提供依据,进而对重点盆地和全国油气可采资源潜力进行评价。

1.评价单元类型划分

为使可采系数研究成果与评价单元划分体系有机结合,遵循分类科学性、概括性和实用性三个基本原则,以油气资源类型、盆地类型、圈闭类型、储层岩性、储层物性等地质因素为依据,对评价单元进行了分析和分类,将国内石油评价单元分为中生代坳陷高渗、古近纪与新近纪断陷盆地复杂断块高渗等24种类型,天然气评价单元分为克拉通盆地古隆起、前陆盆地冲断带等16种类型(表4-8、表4-9)。

表4-8 不同类型评价单元石油可采系数取值标准

表4-9 不同类型评价单元天然气可采系数取值标准

2.刻度油气藏数据库的建立

已发现油气资源赋存在油气藏中,建立刻度油气藏数据库是统计已发现油气资源采收率、分析影响采收率主控因素、预测油气资源可采系数的基础。刻度油气藏是油气资源可采系数研究中作为类比标准的,地质认识清楚、开发程度高、已实施二次采油或三次采油技术的油气藏。

刻度油气藏选择原则:①典型性——能代表国内外主要的油气藏类型,保证类比法应用基础的广泛性;②针对性和实用性——针对油气资源评价,有效地指导相应类型评价单元油气资源可采系数的确定;③开发程度高——油气藏开发程度高,地质参数和开发参数基本齐全;④三次采油技术应用具有代表性——尽量选择已实施三次采油技术的油藏,保证技术可采系数的可靠性。

对国内43个油藏、30个气藏,国外59个油藏、22个气藏进行了剖析:收集整理每个油气藏的主要地质和开发参数;每个油气藏的地质条件主要包括储层特征、圈闭条件、流体性质等,开发条件主要包括开采方式、开采速度、增产措施等;研究不同因素对采收率的影响程度,进而确定该油气藏采收率的主控因素;针对开采方式的不同,油藏的采收率可分为一次、二次或三次采收率;气藏主要是一次采收率。通过对每个油气藏的地质条件、开发条件和采收率进行分析,建立起国内外刻度油气藏数据库。

3.可采系数主控因素分析

对影响可采系数的地质条件、开发条件和经济条件进行了分析,建立起可采系数主控因素的评价模型。

(1)在大量统计和重点解剖的基础上,对油气地质条件中的因素逐一进行分析,并提炼出15项油气采收率的主控因素,即盆地类型、储层时代、圈闭类型、沉积相类型、储层岩性、储层厚度、储集空间类型、孔隙度、渗透率、埋深、含油饱和度、原油粘度、原油密度、变异系数、原始气油比。

(2)在诸多开发条件中,提高采收率技术是极为重要的因素,不同提高采收率技术适用条件不同,其提高采收率的潜力也差距很大。通过综合分析,主要技术对不同类型油藏的提高采收率潜力为:最小5%,中间值10%,最大值15%。

(3)利用石油公司提高采收率模拟研究成果,建立了大型背斜油藏、复杂背斜油藏、断块油藏、岩性油藏、复杂储层油藏等在税后内部收益率为12%、油田开发到含水95%时聚合物驱和化学复合驱采油时的油价与油田采收率之间的关系,若这五类油藏要达到相同的采收率,条件好的如大型背斜油藏、复杂背斜油藏所需的油价低于条件差的如岩性油藏、复杂储层油藏。

4.可采系数取值标准的建立

在研究中,解剖了国内43个油藏、30个气藏,国外59个油藏、22个气藏,统计分析了大量油气田采收率数据,给出了不同类型评价单元油气技术可采系数和经济可采系数取值范围,建立了不同类型评价单元油气可采系数取值标准(表4-8、表4-9)。

(1)不同类型评价单元石油可采系数相差较大,以技术可采系数为例:中生代坳陷高渗和古近纪与新近纪断陷盆地复杂断块高渗评价单元可采系数最大,其中间值大于40%;中生代坳陷中渗、古近纪与新近纪断陷盆地复杂断块中渗、中生代断陷、中新生代前陆、古生界潜山、古生界碎屑岩、古近纪残留型断陷、陆缘裂谷断陷古近纪与新近纪海相轻质油、陆缘弧后古近纪与新近纪海陆交互相轻质油等评价单元可采系数为30%~40%;中生代坳陷低渗、古近纪与新近纪断陷盆地复杂断块低渗、古生界缝洞、南方古近纪与新近纪中小盆地、低渗碎屑岩、重(稠)油中高渗、变质岩、砾岩、陆内裂谷断陷新近纪重质油、陆内裂谷断陷古近纪复杂断块等评价单元可采系数为20%~30%;低渗碳酸盐岩、重(稠)油低渗、火山岩等评价单元可采系数为15%~20%。

(2)不同类型评价单元天然气可采系数相差也较大:克拉通碳酸盐缝洞、礁滩和前陆冲断带等评价单元可采系数最大,其平均值大于70%;克拉通古隆起、克拉通碎屑岩、前陆前渊、南方中小盆地、陆缘断陷、火山岩、变质岩和海域古近纪与新近纪砂岩等评价单元可采系数为60%~70%;前陆斜坡、生物气、中生代坳陷、古近纪与新近纪断陷盆地复杂断块、残留断陷、砾岩等评价单元可采系数为50%~60%;致密砂岩等评价单元可采系数最小,其平均值小于50%。

5.可采系数计算方法的建立

可采系数计算方法包括可采系数标准表法和刻度区类比法两种方法。

(1)标准表取值法。利用可采系数标准表求取不同评价单元可采系数的步骤如下:在不同类型评价单元可采系数取值标准表中找到已知评价单元的所属类型;明确评价单元与可采系数相关因素(宏观、微观)的定性、定量资料;对照可采系数的类比评分标准表和类比评分计算方法,对评价单元进行类比打分;根据类比评价结果求取可采系数。

(2)刻度区类比法。以建立的国内外刻度油气藏数据库为基础,利用刻度区类比法来求取不同评价单元的可采系数。具体步骤如下:根据评价单元分类标准,将具体评价单元归类,并分析整理该评价单元的油气地质条件和开发条件;根据评价单元的类型及其地质条件和开发条件,从国内外刻度油气藏数据库选择适合的类比对象;对照可采系数的类比评分标准表和类比评分计算方法,对该评价单元及其类比对象进行打分并计算它们的得分差值;根据得分差值求取该评价单元的可采系数。

通过油气可采系数标准和计算方法在全国129个盆地中的推广应用,既检验了可采系数取值标准和所用基础数据的可靠性、可行性和适用性,保证了油气可采资源量计算的客观性,又获得了全国油气可采资源量。

万家乐天然气热水器怎么样?三个方面分析

鄂尔多斯盆地中部气田是我国最大的气田之一,其主要产层为奥陶系风化壳产层,其次为石炭—二叠系产层。其中石炭—二叠系产层中天然气主要为煤成气,这一点已得到共识,但对于奥陶系风化壳产层天然气的气源问题仍未取得一致的认识。许多学者已在这方面做了大量的研究工作,多数认为其属上古生界煤成气和下古生界油型气的两源混合气(杨俊杰等,1991,1992;曾少华,1991;孙冬敏等,1997),但对于以哪一种气源为主力气源尚存在较大争论,主要有以下两种代表性观点。一种是以关德师等(1993)、戴金星等(1987,1999)、张士亚(1994)、张文正等(1997)、夏新宇等(1998,2000)为代表,认为中部气田奥陶系产层的天然气主要是石炭—二叠系煤系烃源岩的产物,以上古生界煤成气为主;另一种是以陈安定(1994,2000)、黄第藩等(1996)、徐永昌等(1994)、郝石生等(1996)、蒋助生等(1999)为代表,认为中部气田奥陶系产层的天然气主要是下古生界奥陶系海相碳酸盐岩的产物,主要为自生自储的油型气。所以弄清中部气田奥陶系风化壳产层的天然气来源意义重大,直接关系到对气田成藏模式的认识以及油气资源评价、勘探部署。

笔者在前人大量研究工作的基础上,参考已有的天然气成因类型划分方案(郜建军等,1987;张义纲,1991;张士亚等,1994;戴金星等,1992,1999;徐永昌等,1994,1998;黄藉中,1991;冯福闿等,1995),结合中部气田天然气实际资料,得出鄂尔多斯盆地中部气田天然气划分标准(表5-8)。

(一)应用天然气组分的碳、氢同位素判别气源

1.用δ13C1和δ13C2相结合探讨气源

就沉积有机质热解成因天然气来说,其δ13C1值主要与成气母质类型和热演化程度有关,随母质类型变好而减少,随成熟度增高而增大。δ13C2值则主要与母质类型有关。源于腐殖型母质的煤成气,富集碳的重同位素而δ13C值偏大,而源于腐泥型母质的油型气δ13C值偏小。据此,许多学者都提出过一些大体一致的划分油型气和煤成气的指标界限(戴金星等,1992;徐永昌等,1994;张士亚等,1994;黄藉中,1991;张义刚,1991)。一般以δ13C2的界限值-29‰~-27‰为这两种类型天然气的分界。而δ13C1值:对油型气δ13C1>-55‰,一般为-50‰~-35‰;对煤成气δ13C1>-42‰,一般-38‰~-28‰。但是,由于δ13C1值随成熟度增高而增大,因此成熟度相对较低的煤成气与成熟度相对较高的油型气在δ13C1值域分布上的叠合现象是常见的,并往往造成判识上的困难和失误。这说明在天然气成因分类研究时,采用δ13C1和δ13C2相结合的方法才是合理的、有效的(戴金星等,1992;徐永昌等,1994;黄第藩等,1996)。同时,甲烷是天然气中最主要的占绝对优势的组分,特别对高—过成熟气(干燥系数在0.95以上),那种仅用δ13C2以上重烃气进行成因分类和混源问题研究的方法(陈安定,1994),无疑降低了结果的置信度。

表5-8 鄂尔多斯盆地中部气田天然气划分标准

图5-10是根据甲烷、乙烷碳同位素判别天然气成因类型的δ13C1—δ13C2类型图,该图主要以甲烷碳同位素判别气的演化程度,而主要以乙烷碳同位素判别成气的母质类型。图中δ13C2<-30‰区域是比较典型的油型气分布区,δ13C2>-28‰是比较典型的煤成气分布区,而δ13C2=—30‰~—28‰之间的气有一定的混合作用或来自混合型母质。不难看出,盆地东、西部C—P气样主要落入煤成气区域, 气样主要落入油型气区域,中部气田 气样既有落入油型气区域,又有落入煤成气区域,还有落入两者的混合气区。

2.用δ13C1结合(δ13C2—δ13C1)分析气源

(δ13C2—δ13C1)值是一项与成熟度有关的参数,具有随成熟度增高其差值变小的特点(黄藉中,1991;陈安定,1994;黄第藩等,1996)。在成熟度相对较低的高成熟演化阶段(Ro=1.3%~2.0%)的早期,该值一般在12‰左右,而在过成熟阶段后期发生倒转,出现负值。因此,把它与δ13C1或δ13C2结合起来作图时,将能更好地揭示出不同成熟度天然气点群之间或不同δ13C1或δ13C2点群之间的成因联系和差别。如图5-11和图5-12所示,煤成气以盆地东、西部的C—P气为主,部分中部气田的 气;油型气以中部气田的 气为代表,还有部分中部气田的 气;两者混合气主要是中部气田 气。

图5-10 鄂尔多斯盆地古生界天然气的δ13C1和δ13C2关系图

图5-11 鄂尔多斯盆地古生界天然气的δ13C1和(δ13C2-δ13C1)的关系图(图例同图5-10)

图5-12 鄂尔多斯盆地古生界天然气的δ13C2和(δ13C2-δ13C1)的关系图(图例同图5-10)

3.用δ13C2与C2H6含量、δ13C3关系分析气源

近年来,一些研究者(郜建军等,1987;陈安定等,1994;黄藉中等,1991;冯福闿等,1995)强调了乙烷、丙烷碳同位素在区分两种不同母质热成因气(高演化海相腐泥型气与陆相煤系气)中的作用。表5-9列出了国内外若干有代表性的高演化海相腐泥型气与陆相煤系气的各组分碳同位素资料。可以看出:

(1)对处于低演化阶段的海相腐泥型气来说,其甲烷碳同位素一般小于-40‰,而煤系气一般大于-40‰,区分效果较好。但当C1/Cn>0.95即变为干气,尤其当此值达到0.96以上时,海相腐泥型气的δ13C1普遍升高至-32‰~-33‰,变得与煤系气不易区分。

(2)乙烷碳同位素在这两者之间所表现出的特征却是稳定和区分明朗。对海相腐泥型气来说,尽管其热演化程度很高(如四川盆地威远气田震旦系气的源岩Ro高达3.5%左右,气的δ13C2平均值为-31.9‰),而煤系气的热演化程度不管多低,两者之间一直存在一条基本上不可越的界线:δ13C2=-29‰。并且,随乙烷含量减少,即热演化程度增加,乙烷碳同位素之间的差异明显增大,这为用δ13C2为主判别高演化两种热成因气提供了可靠依据。

(3)丙烷碳同位素与乙烷碳同位素具相似属性——稳定而区分明朗。一般认为,煤成气δ13C3应大于-26‰,油型气δ13C3小于-28‰,δ13C3在-28‰~-26‰之间,煤成气和油型气难以准确鉴别。陈安定等(1993)研究认为,鄂尔多斯盆地中部气田油型气的δ13C3/δ13C2一般在0.9左右,两者差值较大;煤成气的该比值一般在0.95左右,两者差值较小。

表5-9 国内外已知海相腐泥型气与陆相煤系气的组分碳同位素分布平均值

图5-13、图5-14分别是鄂尔多斯盆地天然气的δ13C2与C2H6含量、δ13C2与δ13C3关系图。不难看出,盆地东、西部的C—P产层天然气主要为煤成气,中部气田O1m5产层天然气既有油型气,又有煤成气,还有两者的混源成因气。图中联结于两区之间的一个带显示出随C2H6含量减少,δ13C2值逐渐偏负的相关关系,违背了热演化规律,这是一种反常现象,混合才可能是唯一的解释。

从δ13C2与C2H6含量关系图(图5-13)中可见,鄂尔多斯盆地中部气田绝大多数 气样和近半数的 气样落在油型气区域,绝大部分C—P气样和少数 气样及个别 气样落在煤成气区域,另半数 气样和少数C—P气样组成一个带联结于两区之间,属两者的混合气。

图5-13 鄂尔多斯盆地古生界天然气的δ13C2和乙烷含量的关系图(图例同图5-10)

图5-14 鄂尔多斯盆地古生界天然气的δ13C2和δ13C3的关系图(图例同图5-10)

由δ13C2与δ13C3关系图(图5-14)可知,鄂尔多斯盆地中部气田 绝大多数气样落入油型气区域,C—P大部分气样和部分 气样落入煤成气区域,部分 气样和少数C—P气样、 气样落入混合气,这与用C2H6含量与δ13C2图的判别结果(图5-13)基本一致,所不同的只是煤成气比例有所增多,主要是过成熟气δ13C3偏重所致。

4.用δ13C1和δDCH4关系分析气源

从δ13C1—δDCH4的关系图(图5-15)可知,油型气主要以 为代表,部分 ,其δDCH4的分布窄且相对偏正,为-165‰±8‰;煤成气主要以C—P为代表,部分 气样,δDCH4的分布宽且相对偏负,为-175‰±20‰。

图5-15 鄂尔多斯盆地古生界天然气的δ13C1和δDCH4的关系图(图例同图5-10)

(二)气源岩/天然气的动态对比探讨气源

1.奥陶系灰岩在高演化阶段轻烃组成特征

为了研究高演化阶段奥陶系灰岩Ⅰ-Ⅱ型有机质生成的轻烃组成特征,将下古生界风化壳灰岩样在350℃和450℃温阶分别进行模拟观测其轻烃在热演化过程的组成特征,因为250℃热解产物可能反映的是岩石吸附和残余烃类,对于鄂尔多斯盆地风化壳灰岩来说吸附烃类是可能的,不代表其原始的烃类生成特征,只有在排出了吸附烃后(250℃),更高温度热解产物才能真正反映其生烃特征,另一方面,由于气源岩的排驱分馏效应,排出的链烷烃较多,这样岩石中残余的芳烃较多,因此在已发生过排烃的气源岩中,残余烃中芳烃高于对应天然气的芳烃含量,例如盐下的奥陶系灰岩样品,2069m奥陶系云灰岩350℃和450℃温度热解轻烃产物见图5-16,可看出随热演化程度增高热解产物中苯和甲苯含量逐渐增高的特点。

图5-16 鄂尔多斯盆地古生界天然气与气源岩不同阶段轻烃产物动态对比图

通过实验分析得出如下认识:①250℃轻烃反映的是岩石吸附和残余烃类,与350℃烃类组成差别较大,推断其可能是受到气体侵入吸附“污染”所致,不能代表其原始的烃类生成特征,因此,不能用风化壳灰岩吸附的烃类分布特征来作为气源对比依据;②灰岩中I型、Ⅱ型有机质随热演化程度增加,生成的烃产物同样具有苯和甲苯含量高的特征,鄂尔多斯盆地下古生界气源岩均处于高成熟—过成熟阶段,具有高苯和甲苯含量的天然气也有可能是下古生界气源岩来源的。

2.气源岩与天然气的轻烃组成动态对比

根据气源岩中轻烃的组成分布可以看出,奥陶系气源岩在高成熟阶段生成的轻烃产物中同样具有苯和甲苯含量高的特点,因此尽管林2井和陕6井奥陶系天然气中甲苯含量很高,但其仍然具有下古生界气源岩来源的可能性。天然气轻烃组成与下古生界气源岩热抽提物(反映残余或吸附烃类)也有差别(图5-16),因而有效的气源对比应该通过热模拟方法进行动态对比。也就是说,热模拟过程的产物可能真正反映气源岩的生烃特征。从图5-16中气—源岩轻烃组成对比可以看出,天然气中甲基环已烷和链烷烃含量也较高,这与上古生界煤岩组成有明显差别,与奥陶系灰岩组成也有差别,但其分布类似于2069m云灰岩在350℃和450℃的热模拟产物,其来源可能也与下古生界气源岩有关。

3.天然气轻烃组成平面分布特征

天然气轻烃组成与其成因密切相关。上古生界典型煤成气的轻烃组成主要有如下特征(李剑等,2001):①nC7、甲基环己烷和甲苯相对含量组成中,甲基环己烷含量最高,一般要高于60%;②甲苯含量较低,一般要低于15%。下古生界天然气的轻烃组成中甲基环己烷含量变化在35%~89%范围内,甲苯相对含量在25%~45%范围内,变化范围较大,说明下古生界风化壳的天然气来源比较复杂。

从本章第一节可知,平面分布上在鄂尔多斯盆地中部气田东部甲苯/甲基环己烷含量较高,一般超过0.5,有的甚至超过1.0(图5-3),对于苯/甲基环戊烷比值在平面上的分布情况类似于甲苯/甲基环己烷。据此可为鄂尔多斯盆地中部气田气源分析提供依据。

4.水溶气轻烃组成平面分布特征

在水溶气轻烃组成研究中最关心的可能是水中溶解的苯和甲苯含量多少及相对含量。由第四章第四节可知,鄂尔多斯盆地中部气田下古生界水溶气中苯和甲苯含量在平面上分布不均匀(图4-13)。总的来说,在中部气田的中东部具有相对较高的苯和甲苯含量,最高的可达1.16%和1.13%;而在中部气田的西部、北部及南部苯和甲苯含量较低,大多数井中苯和甲苯含量均低于0.1%,甚至缺乏,并且在水中溶解的主要是苯,而溶解的甲苯含量极低。这一方面反映了苯和甲苯在地层水中的溶解度不同,同时也反映了中部气田不同区块的天然气成因类型可能存在差异。

(三)气源综合对比分析

在上述研究的基础之上,根据下古生界天然气地球化学特征对鄂尔多斯盆地中东部不同部位天然气的成因进行了综合对比分析,各部位的划分情况如图5-17所示,将中部气田划分为4个区块分别进行气源对比。

表5-10列出了中部气田各区块天然气各项指标分布范围,为了便于对比分析,同时也列出了上古生界天然气和上、下古生界气源岩的相应指标数值范围。通过对比分析,鄂尔多斯盆地中部气田的天然气为混合来源已是不容否认的事实,只是在不同区块上、下古生界天然气混合程度不同而已。通过各项指标的综合分析,在中部气田的北部、西部和南部天然气主要以下古生界来源为主的混合气,而中部气田的东部则主要以上古生界来源为主的混合气。

中部气田的北部、西部和南部δ13C2值较低,一般分布在-33‰~-29‰之间,与上古生界天然气(δ13C2一般分布在-25‰~-22‰之间)差别很大,而与下古生界气源岩的热模拟产物δ13C2值(在-36.6‰~-32.0‰之间)较接近,甲苯/甲基环己烷比值在这三个区块均低于0.4,正己烷/甲基环戊烷一般小于1.0,三环萜烷/五环三萜烷比值相对较高,与下古生界气源岩比较接近,而与上古生界天然气之间差别较大,水溶气中的苯、甲苯含量在这三个区块均较低,40Ar/36Ar比值均较大,反映其与下古生界气源岩有更好的亲缘关系。

图5-17 鄂尔多斯盆地中东部下古生界天然气气源对比区块划分

表5-10 鄂尔多斯盆地中部气田气源综合对比表

中部气田的东部各项指标的分布与以上三个区块相反,δ13C2值分布在-28‰~-25‰之间,甲苯/甲基环己烷比值大于0.5,正己烷/甲基环戊烷比值分布在1.1~1.3之间,三环萜烷/五环三萜烷比值很低(仅为0.1),与上古生界气源岩和天然气比较接近,反映其可能主要与上古生界天然气来源有关。

(四)气源混合比计算

精确计算出天然气中各种成因类型混合比例是非常困难的,这主要表现在以下三个方面:一是计算混合比时的参数选择,二是端元值的确定,同一类型天然气端元值也有很大差别,三是无论是用哪种参数进行计算,只得出单井混合比,与中部气田的天然气混合比之间还存在一些误差。基于上述原因及本研究工作的程度有限,只对鄂尔多斯盆地中部气田的天然气混合比分区块进行了初评,选用的指标主要为乙烷,在端元值的选择时,下古生界来源气使用盆地南缘平凉组泥岩热模拟产物生气高峰期时的δ13C2值,为-34.7‰,上古生界来源气使用上古生界天然气δ13C2的平均值-25.1‰。计算公式如下:

鄂尔多斯盆地中部气田地层流体特征与天然气成藏

式中:nA,nB分别为上古生界天然气和下古生界天然气组分百分含量;X,1-X分别为上古生界天然气和下古生界天然气混合比;δ13C2(A),δ13C2(B)分别为上古生界和下古生界天然气碳同位素值。

利用上述公式,计算出鄂尔多斯盆地中部气田不同区块天然气混合比,如表5-11所示。

表5-11 鄂尔多斯盆地中部气田不同区块天然气混合比

从表5-11中可以看出,鄂尔多斯盆地中部气田的北部、西部、南部以下古生界天然气来源为主,约占60%~70%,上古生界天然气来源为辅,约占30%~40%,而中部气田的东部以上古生界天然气来源为主,约占70%,下古生界天然气来源为辅,约占30%。

冬天对于朋友们的印象就是冷,冷淡时候是不是很想跑一个热水澡呢?现在很多家庭都放弃了太阳能的使用,而选择使用热水器。那又有一个问题,热水器该怎么选择呢?现编建议大家可以购买燃气热水器,即开即用,非常多方便。万家乐燃气热水器就可以满足朋友们的需求,那万家乐燃气热水器怎么样呢?如果朋友们想购买燃气热水器,可以参考一下小编的介绍。

万家乐燃气热水器的外观

万家乐燃气热水器外观采用水晶银喷粉材质,附带有横向凹槽设计,不容刮花和生锈。万家乐燃气热水器的操作面板采用VFD动态显示,随心操作,工作状态一目了然。不同于其他产品,万家乐采用真铜热交换器,导热快、提高热水器热效率且经久耐用。

万家乐燃气热水器的气源

该产品采用天然气为燃烧气源,同时运用数码恒温智能控制技术,保证水温恒定。配置的进口自动分段高精度燃气比例阀,精确调配燃气与空气比例,让燃气燃烧更充分,避免泄露燃气对人身产生伤害,智能三六比例阀,高效节能,更省气。

万家乐燃气热水器的水阀

万家乐采用涡轮式水阀,有效防止水中杂质堵塞,出水更快。此外产品还加入了故障自检功能,出现故障后显示屏同步显示故障代码,用户可以参照说明书来进行简单的维护,万家乐燃气热水器具有漏电保护、防干烧、过压保护、泄水防冻、熄火等多重安全保障,使用更安全。

万家乐燃气热水器采用水晶银面板,时尚大方。真铜热交换器使用寿命更持久,智能恒温设计使用户用着更舒适,避免了传统燃气热水器过热而烫伤皮肤。智能比例阀也使热水器更节能。特有故障自检和多重安全保护功能也使用户用着更安全、放心。

仅仅从以上三个方面对于万家乐燃气热水器的分析,就可以表明万家乐燃气热水器的质量是很好的,是值得顾客购买的,不仅方便使用,想要热水的时候就可以使用,而且方便省电,因为它的设计可以人为控制。万家乐燃气热水器的外观形体很漂亮,气源,水阀都是比较好的,最近要购买燃气热水器的朋友们可以考虑一下哦!朋友们,土巴兔网站上对于这一类的内容介绍非常多,朋友们可以自行查询。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:,就能免费领取哦~