1.油气评价原理及方法

2. 勘探目标评价与风险分析方法

3.常规油气评价方法

4.不同叠合构造单元烃源岩动态分析

5.天然气的成分与特性

6.天然气水合物简介

7.LNG前景如何

气田动态分析_天然气动态分析方法有哪几种形式

刘 萍 孙粉锦 李贵中 陈振宏 邓 泽 庚 勐 曾良君 杨 泳

( 中石油勘探开发研究院廊坊分院 河北廊坊 065007)

摘 要: 煤层含气量现场测试中发现以下问题: ① 慢速解吸法测量低煤阶煤层含气量时,残余气量小可能导致常规方法无法获得结果或误差偏大; ② 快速解吸法测试煤层气含气量时,粉碎煤样测试残余气的方式可能造成少量煤层气的散失而使残余气结果偏低,为此,需建立一种残余气预测的数值计算方法,加强实测与数值计算结果对比,提高含气量测试准确性和可靠度。以描述吸附过程 Langmuir 公式为参考,将解吸量对应吸附量,解吸时间对应吸附压力,结合实验分析数据,提出了一种用于预测残余气的数值计算新方法。通过与实测数据进行对析,认为该方法准确度较高、稳定性好,能够较准确获得低含气量情况下的残余气结果,并有效提高现场含气量测试工作效率。

关键词: 煤层含气量 残余气 计算方法 Langmuir 曲线拟合法

基金项目: 国家科技重大专项 “大型油气田及煤层气开发”项目 33 《煤层气富集规律研究及有利区块预测评价》( 编号: 2008ZX05033) 下属课题 《中国煤层气有利区块评价与优选》( 编号: 2008ZX05033 -005) 。

作者简介: 刘萍同,1957 年生,女,高级工程师,主要从事煤层气实验研究工作 . E-mail: liuping69@ petrochi-na. com. cn. Tel: ( 010) 69213353.

A New Method of Numerical Calculation to Predict Residual Gas

LIU Ping SUN Fenjin LI Guizhong CHEN Zhenhong DENG Ze GENG Meng ZENG Liangjun and YANG Yong

( Langfang Branch of Petro China Research Institute of Petroleum Exploration and Development,Langfang Hebei 065007,China)

Abstract: The following issues are found in the site test of coalbed gas content: ( 1) When slow desorption method is employed to measure the coalbed gas content,small amount of residual gas may lead to no result with the lication of the routine method or high deviation; ( 2) When quick desorption method is employed to deter- mine the coalbed gas content,testing the residual gas by crushing coal sample may cause dissipation of a small a- mount of coal-bed gas and lead to lower residual gas results. Due to this,a method of numerical calculation to pre- dict residual gas shall be established to enhance the comparison of the actual measured result and the numerical calculation result and improve the accuracy and the reliability of the gas content test. By taking the Langmuir for- mula that describes the desorption process as reference,a new method of numerical calculation to predict residual gas is proposed by comparing the desorption quantity with the adsorption quantity,desorption time with the adsorp- tion pressure,as well as combining the experimental analysis data. Through comparative analysis with the meas- ured data,it is concluded that this method has high accuracy and good stability,and can oain the result of the residual gas under low gas content more accurately,thus to enhance the work efficiency of site gas content test.

Keywords: coalbed gas content; residual gas; calculation method; Langmuir curve fitting method

引言

煤层气含量是表征煤层气储层特征的关键参数之一,准确获取煤层气含量对于煤层气勘探开发和煤矿瓦斯灾害防治具有重要意义。在测试过程中,煤层含气量分为损失气量、解吸气量和残余气量3部分,损失气量通过数值方法回归计算,解吸气量和残余气量则是实际解吸测试得到(钱凯等,1996,五戏岩等,2005)。一般情况下,残余气可通过选取解吸剩余样品并破碎获得,但特殊情况下,直接测试不能满足残余气测试的要求。针对以上问题,本文将详细探讨导致该特殊情况的原因,并首次提出一种基于Langmuir公式的残余气预测算新方法。

1 残余气测试中存在的特殊问题

国内学者对煤层含气量的测试和计算方法进行了大量的研究,周胜国,徐成法等(1995,2002,2005)通过解吸模拟实验,发现煤样全过程解吸特征曲线为不对称的S型,认为解吸初期气体解吸是与解吸时间的平方根呈线形关系需修正;张群等(2009)通过模拟实验发现实测的模拟损失气量比美国矿业局直接法估算的损失气量高很多;邓泽等(2008)通过分析测试中解吸温度和损失时间对损失气量的影响,提出曲线拟合法计算损失气量;高绪晨等(1999),傅雪海等(1999),董红等(2001),杨东根等(2010),根据含气煤层的测井物理响应,基于含气煤岩物理特征和密度、伽马、声波时差等测井的统计关系,提出了间接计算含气量的方法;张群等(1999),对残余气做了大量分析研究,认为残余气在煤层气中占的比例变化很大,为15%~30%,受煤级、灰分和煤样粒度等因素影响,煤级和灰分越高,残余气含量亦越高;刘洪林等(2000),指出煤阶、灰分、温度、显微煤岩类型、割理发育程度及煤样粒度等参数是影响吸附时间长短的重要因素,并决定了残余气的比例。前人的研究主要集中在损失气的模拟和计算、总含气量的直接或间接预测以及残余气比重的影响因素分析,未对有关残余气的计算方法进行详细论述。

目前常用的含气量测试方法有慢速解吸法和快速解吸法,这两种方法在残余气现场操作和测试中均存在一些问题,主要表现在:①利用慢速解吸法测量低煤阶煤层含气量时,由于含气量普遍偏小,残余气量更低,常规方法可能无法直接测得残余气量,或因测值太低导致误差增大;②快速解吸法测试煤层气含气量时,由于人为终止自然解吸,并通过粉碎煤样测试残余气,可能造成少量煤层气散失,致使残余气的测试结果小于实际值,总含气量偏小,另一方面由于解吸记录数据较少,不能正确反映煤岩解吸规律,无法得到吸附时间、扩散能力等关键参数。针对以上问题,本文提出一种新的残余气数值计算方法,即Langmuir曲线拟合法,试图从数值计算的角度探讨残余气,解决存在的问题。

2 残余气比重的影响因素和Langmuir曲线拟合法的提出

2.1 煤层气解吸曲线特征

图1 为高煤阶、低煤阶样品解吸曲线,由图可知,两样品解吸气量随时间延长,均不断增大,呈先陡后缓的曲线形态。解吸记录起始点为将煤样密封至解吸罐的时刻,由于此时解吸压力为大气压力(远低于临界压力),吸附于大中孔隙表面的煤层气率先通过有利路径解吸,导致解吸初期曲线陡峭,但在吸附时间(63.2%)之后,随着常规解吸试验的进行,煤基质中气体浓度逐渐减小,产生扩散的驱动力即浓度梯度亦随之减小,越来越多的气体难以克服微孔隙产生的扩散阻力,不能从煤中解吸出来(周胜国,2002),曲线之间逐渐趋于平缓,此时解吸出来的煤层气以残留在煤基质内的微孔表面的气体为主。

图1 某高(a)低(b)煤阶解吸曲线

2.2 残余气比重的影响因素分析

残余气比重是指残余气占总含气量的百分比。其影响因素主要包括煤阶、煤样粒度和灰分等。煤阶不同,岩隙结构不同。低阶煤以大、中孔为主,有利于解吸扩散,同时微孔比例小,保持残余气的能力有限,即残余气比重小;相反高阶煤微孔发育,气体需克服较大的扩散阻力,使得自然解吸结束时仍残余相对较多的煤层气;中阶煤介于二者之间。煤样粒度对解吸速度有一定影响,一般而言,粉煤、煤屑(钻屑)、煤心(块样)的解吸速度依次减小,吸附时间增大,残余气滞留能力增强(徐成法等,2005)。煤样越碎,解吸距离缩短,扩散阻力减小,使得在柱状和块状煤样中不能解吸出来的一些气体解吸出来,因此一般情况下煤样粒度越小,残余气比重越小。另外随着煤中灰分的增加,残余气含量逐渐增高,两者呈较好的正相关关系。通过煤岩学和扫描电子显微镜研究,初步认为,这是因为煤中存在的细小矿物如黏土矿物等充填在煤的孔隙中,不同程度地阻碍了气体的运移通道,使气体在煤中扩散运移的能力减弱,不利于气体从煤中解吸出来所致。此外煤岩组分、测试温度等对残余气比重也有一定程度的影响。

2.3 Langmuir曲线拟合法

Langmuir公式是根据汽化和凝聚动力学平衡原理建立的,其方程简单实用,已被广泛应用于煤和其他吸附剂对气体的吸附,同时,根据其动态平衡的设,该方程同样可以描述煤层气解吸过程。煤层气吸附和解吸通常认为是一种可逆过程,但是适用于煤层气吸附的Langmuir公式能否较好地描述其解吸曲线形态值得研究。为此,基于Langmuir公式,通过参数意义转换,提出用于预测残余气含量的新方法,并通过拟合度检验判断其是否适用于解吸过程。

标准Langmuir公式为

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

式中:V为吸附量,m3/t;P为吸附压力,MPa;VL为Langmuir体积,即理论最大吸附量,m3/t;PL为Langmuir压力,即体积达到0.5VL时,对应的吸附压力,MPa。可以看出,吸附量随压力的增大不断增加,当压力趋近于无穷大时,吸附量亦无限接近吸附量最大值,而解吸量同样随着解吸时间的增大不断增加,当解吸时间趋近于无穷大时,解吸气量亦接近于最大值而趋于稳定,体现出与吸附曲线相似的曲线变化形态,因此变换Lang-muir公式的字母意义,将解吸量对应吸附量,解吸时间对应吸附压力,即根据吸附和解吸的可逆性规律得

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

其中:G为实测解吸气含量,m3/t;T为实测解吸时间,h;GL为极限解吸气含量,m3/t;TL为解吸气含量达到0.5GL时对应的实测解吸时间,h。变换公式(2),得

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

根据实测解吸数据,参照式(3)得到T/G与T的对应关系图,拟合即可得到极限解吸含气量GL。又因为GL为实测解吸气量Q2与Q3残余气量之和,则可由下式求得残余气量

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

3 现场应用

Langmuir曲线拟合法计算残余气主要依据现场解吸数据,其结果的可靠性主要受限于解吸时间的长短,如图2所示,解吸时间越长,解吸曲线越平缓,预测值越可靠。

吐哈盆地某煤层气井测试中发现,大量低阶煤样品均存在残余气极低而无法直接测量或误差大的问题。以某样品A为例,用本文提出的Langmuir曲线拟合法对低煤阶煤层残余气量进行计算,达到了比较满意的效果,如图3所示,预测极限解吸气量为1.26m3/t,且根据解吸测得的Q2=1.24m3/t,求得残余气含量为0.02m3/t,相关系数在0.99以上,具有较高的可信度;同时得到了该区残余气比重分布(图4),残余气比重为0.10%~4.35%,平均0.94%。

针对在快速解吸条件下残余气测量误差可能增大的情况,利用Langmuir曲线拟合法对某井10个样品48h内的解吸数据进行拟合分析,得到残余气值。从表1和图5可以看出,预测值比实测值普遍偏高,平均高出16%。说明现场快速解吸法中关于48h之后即进入残余气测试阶段的规定欠妥,期间造成部分煤层气散失,对损失气量Q1乃至总含气量有一定影响,建议将解吸时间延长至解吸曲线较平缓或解吸量日增长不超过10%的时刻。另外二次取样也会影响残余气测试的准确性,建议现场尽量均匀取样,且至少重复测试2次,取两组相近数据的平均值作为最终残余气量。

图2 样品A实测解吸曲线

图3 样品A拟合曲线

图4 残余气比重分布

表1 某井样品实测结果

续表

图5 残余气结果对比

4 结论

(1)针对残余气测试中主要存在问题,根据煤层气吸附和解吸过程的可逆性规律,首次提出类似于Langmuir公式的残余气预测方法,通过现场实测数据验证,该方法拟合度较高,具有一定的可靠性。

(2)快速解吸条件下,残余气实测值普遍偏低,建议延长解吸时间至解吸曲线较平缓或日增长解吸量不超过10%的时刻,且保持均匀取样,至少重复测试两次,取两组相近数据的平均值作为最终残余气值。

参考文献

邓泽,刘洪林,康永尚.2008.煤层气含气量测试中损失气量的估算方法[J].天然气工业,(3)

董红,侯俊胜,李能根等.2001.煤层煤质和含气量的测井评价方法及其应用[J].物探与化探,(2)

傅雪海,陆国桢,秦杰等.1999.用测井响应值进行煤层气含量拟合和煤体结构划分[J],测井技术,(2)

高绪晨,张炳,羡法.1999.煤工业分析、吸附等温线和含气量的测井解释[J].测井技术,23(2):108~111

刘洪林,王红岩,张建博.2000.煤层气吸附时间计算及其影响因素分析[J].石油实验地质,(4)

彭金宁,傅雪海,申建等.2005.潘庄煤层气解吸特征研究[J].天然气地球科学,16(6):768~770

钱凯,赵庆波.1996.煤层甲烷气勘探开发理论与实验测试技术.北京:石油工业出版社,143~148

王红岩,刘洪林,赵庆波等.2005.煤层气富集成藏规律[M].北京:石油工业出版社,50~75

徐成法,周胜国,郭淑敏.2005.煤层含气量测定方法探讨[J].河南理工大学学报:自然科学版,(2)

张群,范章群.2009.煤层气损失气含量模拟试验及结果分析[J].煤炭学报,(12)

张群,杨锡禄.1999.煤中残余气含量及其影响因素[J].煤田地质与勘探,(5)

周胜国.2002.煤层含气量模拟试验方法及应用[J].煤田地质与勘探,(5)

周胜国.1995.损失气求取方法研究[J].焦作工学院学报,(1)

油气评价原理及方法

一、矿场油气集输的任务及内容

矿场油气集输是指把各分散油井所生产的油气集中起来,经过必要的初加工处理,使之成为合格的原油和天然气,分别送往长距离输油管线的首站(或矿场原油库)或输气管线首站外输的全部工艺过程。

概括地说,矿场油气集输的工作范围是以油井井口为起点,矿场原油库或输油、输气管线首站为终点的矿场业务;主要任务是尽可能多的生产出符合国家质量指标要求的原油和天然气,为国家提供能源保障;具体工作内容包括油气分离、油气计量、原油脱水、天然气净化、原油稳定、轻烃回收、含油污水处理等工艺环节。

二、矿场油气集输流程

矿场油气集输流程是油气在油气田内部流向的总说明。它包括以油气井井口为起点到矿场原油库或输油、输气管线首站为终点的全部工艺过程。矿场油气集输流程可按多种方式划分。

(一)按布站级数划分

在油井的井口和集中处理站之间有不同的布站级数,据此可命名为一级布站流程、二级布站流程和布站流程。

一级布站流程是指油井产物经单井管线直接混输至集中处理站进行分离、计量等处理。该流程适用于离集中处理站较近的油井。

二级布站流程(见图7-2)是指油井产物先经单井管线混输至计量站,在计量站分井计量后,再分站(队)混输至集中处理站处理。该流程适用于油井相对集中、离集中处理站不太远、靠油井压力能将油井产物混输至集中处理站的油区,一般是按油队布置计量站。

图7-2 二级布站集输流程

布站流程是指油井产物在计量站分井计量后,先分站(队)混输至接转站,在接转站进行气液分离,其中的液相经加压后输至集中处理站进行后续处理,气相由油井压力输至集中处理站或天然气处理厂进行处理。该流程适用于离集中处理站较远、靠油井压力不能将油井产物混输至集中处理站的油区。

总体而言,二级布站流程是较合理的布站方式,其特点是密闭程度较高,油气损耗较少,能量利用合理,便于集中管理。但在实际应用中,要根据具体情况具体分析确定布站方式。

(二)按加热降黏方式划分

我国油田生产的原油多数是“三高(高含蜡、高凝点、高黏度)”原油,一般用加热方式输送。按加热方式的不同可分为井口加热集输流程、伴热集输流程(蒸汽伴热或热水伴热)、掺合集输流程(掺蒸汽、掺热油、掺热水、掺活性水)和井口不加热集输流程等。

1.井口加热集输流程

井口加热集输流程如图7-3所示。油井产物经井口加热炉加热后,进计量站分离计量,再经计量站加热炉加热后,混输至接转站或集中处理站。这是目前我国油田应用较普遍的一种集输流程。

图7-3 井口加热集输流程

1—井口水套加热炉;2—计量分离器;3—计量站水套加热炉;4—计量仪表

2.伴热集输流程

伴热集输流程是用热介质对集输管线进行伴热的集输流程,按所用的伴热介质不同可分为蒸汽伴热集输流程和热水伴热集输流程。

图7-4为蒸汽伴热集输流程,通过设在接转站内的蒸汽锅炉产生蒸汽,用一条蒸汽管线对井口与计量站间的混输管线进行伴热。

图7-4 蒸汽伴热集输流程

1—生产、计量分离器;2—除油分离器;3—缓冲油罐;4—外输油泵;5—外输加热炉;6—锅炉;7—水池

图7-5为热水伴热集输流程,通过设在接转站内的加热炉对循环水进行加热。去油井的热水管线单独保温,对井口装置进行伴热;回水管线与油井的出油管线一起对油管线进行伴热。

这两种流程比较简单,适用于低压、低产、原油流动性差的油区的伴热集输,但需有蒸汽产生设备或循环水加热炉,一次性投资大,运行中热损失大,热效率较低。

3.掺合集输流程

掺合集输流程是将具有降黏作用的介质掺入井口出油管线中,以达到降低油品黏度、实现安全输送的目的。常用作降黏介质的有蒸汽、热稀油、热水和活性水等。

图7-6为掺稀油集输流程。稀油经加压、加热后从井口掺入油井的出油管线中,使原油在集输过程中的黏度降低。该流程适用于地层渗透率低、产液量少、原油黏度高的油井,但设备较多,流程复杂,需要有适于掺合的稀油。

图7-5 热水伴热集输流程

1—生产、计量分离器;2—除油分离器;3—缓冲油罐;4—外输油泵;5—外输加热炉;6—缓冲水罐;7—循环水泵;8—循环水加热炉

图7-6 掺稀油集输流程

1—来油计量阀组;2—加热炉;3—三相分离器;4—脱水泵;5—沉降罐;6—脱水加热炉;7—电脱水器;8—净化油罐;9—稀油分配计量阀组;10—稀油加热炉;11—外输泵;12—流量计;13—稀油缓冲罐;14—掺油泵;15—天然气去气体净化站;16—净化原油外输;17—稀油进站;18—含油污水去污水站

图7-7为掺活性水集输流程。通过一条专用管线将热活性水从井口掺入油井的出油管线中,将原油变成水包油型的乳状液,使原来油与油、油与管壁间的摩擦变为水与水、水与管壁间的摩擦,以达到降低油品黏度的目的。该流程适用于高黏度原油的集输,但流程复杂,管线、设备易结垢,后端需要增加破乳、脱水等设施。

4.井口不加热集输流程

图7-8为井口不加热集输流程,是随着油田开进入中、后期,油井产液中含水不断增加而用的一种集输方法。由于油井产液中含水的增高,一方面使出液的温度有所提高,另一方面使出液可能形成水包油型乳状液,从而使得输送阻力大为减小,为井口不加热、油井产物在井口温度和压力下直接混输至计量站创造了条件。

图7-7 掺活性水集输流程

图7-8 井口不加热集输流程

(三)按布管形式划分

按通往井口管线的根数可分为单管集输流程、双管集输流程和三管集输流程等。此外,还有环形管网集输流程、枝状管网集输流程、放射状管网集输流程、米字形管网集输流程等。

单管集输流程是指井口与计量站之间只有一条油井产物混输管线,如图7-3所示的加热集输流程。双管集输流程是指井口与计量站之间有两条管线,一条输送油井产物,另一条输送热介质,实现降黏输送,如图7-7所示的掺活性水集输流程。三管集输流程是指井口与计量站之间有三条管线,一条输送油井产物,另外两条实现热介质在计量站与井口之间的循环,如图7-5所示的热水伴热集输流程。

环形管网集输流程如图7-9所示,是用一条通往接转站或集中处理站的环形管道将油区各油井串联起来,实现二级或一级布站。该流程多用于油田油区的集输。

(四)按油气集输系统密闭程度划分

按油气集输系统密闭程度可划分开式集输流程和密闭集输流程。

开式集输流程是指油井产物从井口到外输之间的所有工艺环节当中,至少有一处是与大气相通的,如图7-10中的6、9、13等储油罐处。这种流程运行管理的自动化水平要求不高,参数容易调节,但油气的蒸发损耗大,能耗大。

密闭集输流程是指油井产物从井口到外输之间的所有工艺环节都是密闭的,如图7-11所示。这种流程减少了油气的蒸发损耗,降低了能耗,但由于整个系统是密闭的,若局部出现参数波动,会影响到整个系统,要求运行管理的自动化水平较高。

图7-9 单管环形管网集输流程

图7-10 开式集输流程

1—计量分离器;2—液体流量计;3—气体流量计;4、5—一级、二级油气分离器;6、9、13—储油罐;7、11—一级、二级脱水泵;8、15—脱水、外输加热炉;10—污水泵;12—电脱水器;14—外输油泵

图7-11 密闭集输流程

1—计量分离器;2—液体流量计;3—气体流量计;4、5—一级、二级油气分离器;6、10—压力缓冲罐;7—脱水泵;8、12—脱水、外输加热炉;9—电脱水器;11—外输油泵

(五)海上油田集输流程

目前通用的海上油气生产和集输系统流程主要有半海半陆式集输流程和全海式集输流程两种模式。

半海半陆式油气集输流程适用于离岸近的中型油田和油气产量大的大型油田。它是由海上平台、海底管线和陆上终端构成等部分组成的,如图7-12所示。

全海式集输流程是指油气的生产、集输、处理、储存均是在海上平台进行的,处理后的原油在海上直接装船外运。此流程适用于远离岸边的中小型海上油田。

图7-12 半海半陆式油气集输流程

三、油气初加工处理

在石油的开过程中,伴随着原油的出,同时也出一定量的伴生气、水、泥沙等。在实际生产过程中,需对油井出液进行必要的初加工处理,从而得到合格的原油和天然气。

(一)油气分离

油气分离是油田油气处理的首要环节,它是借助于油气分离器来实现油、气、水、砂等的分离。

油气分离器是油气田用得最多、最重要的设备之一,其类型很多。在生产实际过程中,应用较多的是卧式两相油气分离器和卧式油气水三相分离器等。

1.卧式油气两相分离器

卧式两相油气分离器的结构如图7-13所示,流体由油气混合物入口进入分离器,经入口分流器后,流体的流向和流速发生突变,使油气得到初步分离。在重力的作用下,分离后的液相进入集液部分,在集液部分停留足够的时间(我国规定:一般原油在分离器内的停留时间为3min,起泡原油为5~20min),使液相中的气泡上升到液面进入气相。集液部分的液相最后经原油出口流出分离器进入后续的处理环节。来自入口分流器的气体则分散在液面上方的重力沉降部分,使气体所携带的粒径较大的油滴(>100μm)靠重力沉降到气—液界面。未沉降下来的油滴则随气体进入除雾器,在除雾器内聚结、合并成大油滴,靠重力沉降到集液部分,脱出油滴的气体经气体出口流出分离器。

图7-13 卧式油气两相分离器

1—油气混合物入口;2—入口分流器;3—重力沉降部分;4—除雾器;5—压力控制阀;6—气体出口;7—出油阀;8—原油出口;9—集液部分

2.卧式油气水三相分离器

两相油气分离器只是简单地将油井产物分成气液两相。实际上,油井产物是油、气、水等的混合物,在油气分离的同时,也要实现水的分离。

图7-14 卧式油气水三相分离器

1—油气混合物入口;2—入口分流器;3—重力沉降部分;4—除雾器;5—压力控制阀;6—气体出口;7—挡油板;8—出油口;9—出水口;10—挡水板;11—油池;12—水室

卧式三相油气水分离器可以实现油气水的分离,其结构如图7-14所示,流体由油气混合物入口进入分离器,入口分流器把油气水混合物大致分成气、液两相。液相由导管引至油水界面以下进入集液部分,在集液部分油水实现分离,上层的原油及其乳状液从挡油板上层溢出进入油池,经出油口流出分离器。水经挡水板进入水室,通过出水口流出分离器。气体水平通过重力沉降部分,经除雾器后由气出口流出。

(二)原油脱水

石油的开,伴随着产生大量的水。原油中的含水大都以游离水和乳化水两种形态存在,它们给油气集输、储运乃至石油加工带来了许多危害,因此,必须对原油进行脱水。

乳化水是水与原油形成的乳状液,其物理性质发生了很大的变化,因而是脱水的主要对象。乳化水通常有两种类型,一种是油包水型(W/O)乳化水,其水为分散相、油为连续相;另一种是水包油型(O/W)乳化水,其油为分散相、水为连续相。

原油脱水的方法很多,主要有热沉降脱水、化学脱水、离心法脱水、粗粒化脱水、电脱水等。实际脱水过程中,最常用的是热化学破乳脱水法和电脱水法。

1.热化学破乳脱水

热化学破乳脱水就是将含水原油加热到一定的温度,并向原油中加入少量的化学破乳剂,从而破坏油水乳状液的稳定性,促使水滴碰撞、聚结、沉降,以达到油水分离的目的。

2.电脱水

原油电脱水方法适合于处理含水量在30%左右的油包水型原油乳状液。它是将原油乳状液置于高压直流或交流电场中,在电场力的作用下,促使水滴合并、聚结,形成较大粒径的水滴,实现油水的分离。

原油电脱水过程中,水滴在电场中是以电泳聚结、偶极聚结、振荡聚结三种方式进行聚结合并的。其中,在交流电场中,水滴以偶极聚结、振荡聚结方式为主;在直流电场中,水滴以电泳聚结方式为主,偶极聚结方式为辅。

(三)原油稳定及轻烃回收

1.原油稳定

原油是多组分的碳氢化合物的混合物。在原油集输过程中,由于操作条件的变化,会使原油中的部分轻组分挥发,造成原油蒸发损耗。为了降低原油的蒸发损耗,充分利用油气,保护环境,提高原油储运过程中的安全性,须用一系列工艺措施,将原油中挥发性强的轻组分(主要是C1~C4)脱出,降低原油的挥发性和饱和蒸气压,使原油保持稳定,这一工艺过程称为原油稳定。

原油稳定的方法很多,主要有闪蒸稳定法、分馏稳定法、大罐抽气法等。

闪蒸稳定法是将未稳定的原油加热到一定温度,然后减压闪蒸分离得到相应的气相和液相产物。这是目前应用较广的方法。闪蒸稳定法的原理流程如图7-15所示。

图7-15 闪蒸稳定法的原理流程图

1—换热器;2—加热炉;3—闪蒸塔;4—压缩机;5—冷凝器;6—分离器;7—泵

分馏稳定法是根据原油中各组分挥发度不同的特点,利用精馏的原理将原油中的C1~C4组分脱出,达到稳定的目的。分馏稳定法的典型流程如图7-16所示。分馏稳定法的主要设备是稳定塔,稳定塔是一个完全的精馏塔,塔的上部为精馏段,下部为提馏段,塔顶有回流系统,塔底有重沸系统。这种方法设备多,流程较复杂,但稳定原油的质量好。

图7-16 分馏稳定法的典型流程图

1—换热器;2—稳定塔;3—冷凝器;4—分离器;5—回流罐;6—泵;7—重沸器

大罐抽气法是利用原油处理站内的沉降脱水油罐,在罐顶安装抽气管线,利用压缩机自罐中抽出油蒸气,经增压、冷却、计量后输送至轻烃回收装置进行回收。

2.轻烃回收

轻烃是指天然气中所含的C3以上的烃类混合物,它们在天然气中以气态的形式存在,通过不同的工艺方法将它们以液态的形式回收称为轻烃回收。

轻烃回收的方法较多,常用的有固体吸附法、液体吸收法及低温分离法等。

固体吸附法是利用固体吸附剂(如活性炭、活性氧化铝等)对各种烃类的吸附能力不同,而使天然气中的各组分得以分离的方法。

液体吸收法是利用天然气中各组分在液体吸收油(如石脑油、煤油等)中的溶解度不同,而使天然气中的各组分得以分离的方法。

这两种方法是早期轻烃回收较常用的方法,由于投资高、能耗大、收率低,现已逐步为低温分离法所替代。

低温分离法是利用天然气各组分冷凝温度不同的特点,在降温过程中使各组分得以分离的方法。这种方法的特点是使气体获得低温。通常低温获得的方法主要有制冷剂制冷、膨胀机膨胀制冷及两者混合使用的制冷方法等。

(四)油田气的净化

油田气含有多种杂质,如砂粒、岩屑等固体杂质,水、凝析油等液体杂质,水蒸气、硫化氢、二氧化碳等气体杂质。固体杂质的存在,会导致管道、设备、仪表等的磨损,严重时会堵塞管道,降低输送量,影响生产安全;水蒸气的存在,不仅降低了管线的输送能力和气体热值,而且当输送压力和环境条件变化时,还可能使水蒸气从天然气流中析出,形成液态水、冰或天然气的固体水合物,从而增加管路压降,严重时堵塞管道;酸性气体H2S或CO2的存在,会加剧管线、设备的腐蚀,影响化工产品的质量。由此可见,气体净化是油田气长距离输送或进行轻烃回收前必不可少的环节。气体净化主要用以下几种方法:

1.吸附法

吸附法是利用油田气中的不同组分在固体吸附剂表面上积聚特性不同的原理,使某些组分吸附在固体吸附剂表面,进行脱除的方法。

2.吸收法

吸收法是用适当的液体吸附剂处理气体混合物以除去其中的一种或多种组分的方法。如用液态烃吸收气态烃,用水吸收CO2,用甘醇脱水或用多乙二醇甲醚脱硫,用碱液吸收CO2等。在操作过程中,对吸收后的溶液可进行再生,使溶剂得到循环使用。

3.冷分离法

由于多组分混合气体中各组分的冷凝温度不同,在冷凝过程中高沸点组分先凝结出来,这样就可以使组分得到一定程度的分离。冷却温度越低,分离程度越高。例如低温分离法脱水、膨胀机制冷脱水等都是冷分离方法。这一方法流程简单,成本低廉,特别适用于高压气体。

4.直接转化法

直接转化法是通过适当的化学反应,使杂质转化成无害的化合物留在气体内,或者转化成比原杂质易于除去的化合物,达到净化目的。

四、油气计量

油气计量是指对石油和天然气流量的测定。在油气田生产过程中,从井口到外输间主要分为油气井产量计量、外输流量计量和交接数量计量三种。

(一)油气井产量计量

油气井产量计量是指对生产井所生产的油量和气量的测定。目的是了解油气井生产状态,为油气井管理、油气层动态分析提供资料数据。

对于产量高的油气井,通常是每口井单独设置一套计量装置,称为单井计量。对于产量低的油气井,通常是8~12口油井共用一套计量装置,并对每口油井生产的油、气、水进行计量,油井日产量要定期、定时轮换进行计量。这种计量方式称为多井计量。

油气井产量计量方法有两种:分离计量法和多相流量计量法。分离计量法是利用油气分离器先将油井产物分离成气相和液相,或者气、油和水相,然后分别计量各相的流量。由于计量精度受到分离质量的影响,且油气难以完全分离,因此,该法计量精度差,而且附属设备多,占地面积大。多相流量计量法是自动分析检测油井产物的组成和流量,进而测定油井的产油量、产气量和产液量。它是将分离、计量合成一体完成,具有体积小、精度高、操作方便等特点,是计量发展的方向。

(二)外输流量计量

外输流量计量是对石油和天然气输送流量的测定。它是输出方和接收方进行油气交接经营管理的基本依据。计量要求有连续性,仪表精度高。外输原油一般用高精度的流量仪表连续计量出体积流量,再乘以密度,减去含水量,求出质量流量。综合计量误差一般要求在±0.35%以内。这就要求原油流量仪表要有较高的精度,同时也应定期进行标定。

(三)交接数量计量

交接数量计量是指油田内部各油单元之间进行的油品输送流量的计量。它是衡量各油单元完成生产指标情况,进而进行经济核算的依据。从计量方法上看,交接数量计量与外输流量计量基本相似,但由于这种计量是发生在油田内部各油单元之间的,因此其计量精度不如外输流量计量要求高。

五、含油污水处理

目前,我国多数油田已进入开发晚期,大多用注水方式开发,从而导致油井出液含水量升高(有些油田的综合含水率已达90%)。在初加工处理过程中,油井出液将脱出大量的含油污水,如果含油污水处理不合理就进行回注和排放,不仅会使油田地面设施不能正常运作,而且会因地层堵塞带来危害,影响油田安全生产,同时也会造成环境污染,因此必须合理地处理、利用含油污水。

(一)含油污水的特点

1.污水含油

污水含油量一般为1000 mg/L左右,少部分油田污水含油量高达3000~5000 mg/L,而且同一污水站瞬时污水的含油量也具有一定的波动性。一般来讲,污水中的油是以浮油(油珠直径大于100μm)、分散油(油珠直径10~100μm)、乳化油(油珠直径0.1~10μm)和溶解油(油珠直径小于0.1μm)四种形态分布于水中的。

2.污水含盐

含油污水中含有多种离子,主要包括Ca2+、Mg2+、K+、Na+、Fe2+等阳离子和Cl-、HCO3-、CO23-、SO24-等阴离子。这些离子之间相互结合,生成各种盐类。在一定的条件下,CaCO3、CaSO4、MgCO3等溶解度较小的盐类易形成沉淀。它们如悬浮在水中,会使水浑浊;如沉积在管壁上,会引起结垢。

3.污水含气

污水中溶解有O2、H2S、CO2等多种有害气体。其中,O2是很强的去极化剂,能使阳极的铁原子失去电子,生成Fe2+或Fe3+,进一步生成Fe(OH)3沉淀。同样,CO2、H2S等酸性气体也能与铁原子结合生成FeCO3垢或FeS沉淀。它们都会大大加剧金属设备和管线的腐蚀、结垢。

4.污水含悬浮固体

污水中的悬浮固体是指污水中所含的固体悬浮物,其颗粒直径范围在1~100μm之间,主要包括泥沙、各种腐蚀产物及垢、细菌、胶质、沥青质等。这些悬浮固体悬浮在水中,会使水浑浊;附着在管壁上,会形成沉淀,引起管壁腐蚀;回注于储油层,会使孔隙堵塞,影响油井产量。

综上所述,污水中的成分复杂,其显著特点是腐蚀性强、结垢快。生产中,应重点针对这类问题加以分析,取有效措施加以处理。

(二)含油污水处理流程

含油污水处理工艺流程因污水水质、净化处理要求不同而异。按照处理工艺过程,大致可将其划分为自然除油—混凝沉降—压力过滤流程、压力式聚结沉降分离—过滤流程、浮选式流程及开式生化处理流程等。

1.自然除油—混凝沉降—压力过滤流程

自然除油—混凝沉降—压力过滤流程如图7-17所示。从脱水转油站送来的含油污水经自然除油初步沉降后,投加混凝剂进入混凝沉降罐进行混凝沉降。然后进入缓冲罐,经提升泵加压后进入压力滤罐进行压力过滤。滤后水再加杀菌剂,得到合格的净化水,外输用于回注;自然除油罐和混凝沉降罐回收的原油进入污油罐,经油泵加压输送至油站;对压力滤罐进行反冲洗时,反洗水泵从反洗水罐提水,反冲洗排水进入回收水罐,经回收水泵均匀地加入自然除油罐中再进行处理。

该流程处理效果良好,对污水含油量、水量变化波动适应性强,但当处理规模较大时,压力滤罐数量较多、操作量大,处理工艺自动化程度稍低。

图7-17 自然除油—混凝沉降—压力过滤流程

2.压力式聚结沉降分离—过滤流程

压力式聚结沉降分离—过滤流程如图7-18所示。它加强了流程前段除油和后段过滤净化。脱水站送来的污水,若压力较高,可进旋流除油器;若压力适中,可进接收罐除油。为了提高沉降净化效果,在压力沉降之前增加一级聚结(亦称粗粒化)除油,使油珠粒径变大,易于沉降分离。抑或用旋流除油后直接进入压力沉降。根据对净化水质的要求也可设置一级过滤和二级过滤净化。

图7-18 压力式聚结沉降分离—过滤流程

压力式聚结沉降分离—过滤流程处理净化效率较高,效果良好,污水在处理流程内停留时间较短,系统机械化、自动化水平稍高,但适应水质、水量波动能力稍低。

3.浮选式流程

浮选式流程如图7-19所示。该流程首端大都用溶气气浮,再用诱导气浮或射流气浮取代混凝沉降设施,后端根据净化水回注要求,可设一级过滤和精细过滤装置。

图7-19 浮选式流程

浮选式流程处理效率高,系统自动化程度高,现场预制工作量小,广泛应用于海上油平台污水系统;在陆上油田,广泛用于稠油污水处理。但该流程动力消耗大,维护工作量稍大。

4.开式生化处理流程

开式生化处理流程如图7-20所示。它是针对部分油田污水出量较大、不能完全回注、需要部分处理达标排放的实际设计的。含油污水经过平流隔油池除油沉降,再经过溶气浮选池净化,然后进入一级、二级生物降解池和沉降池,最后经提升泵提升至滤池进行砂滤或吸附过滤达标外排。

图7-20 开式生化处理流程图

总之,上述几种流程是目前含油污水处理较常用的流程。当然,由于各油田污水的具体情况不同,上述流程也并非是绝对的,实际应用中,应根据具体的情况选择合适的流程。

 勘探目标评价与风险分析方法

1.研究思路

应用承接盆地与目标区带研究的含油气系统理论,根据动态分析、重点解剖,理论与实践相结合,研究油气从生成到成藏的整个过程,力图提供更准确更可信的评价结果(图4-4-1)。

图4-4-1 油气评价研究流程图

模拟计算从地质埋藏史分析入手,进行地层回剥和岩石压实模拟,同时结合岩石物性的演化规律和物性间的相互关系,重建物性随地质时代的变迁、埋深的加大、地层温度的升高、烃源岩油气的生成、地层流体的运移演化过程。在这个演化过程中,由于岩石物性差异、流体运移速度差异、岩石孔隙和渗透率演化的差异、温度场的差异、断层活动、流体本身的性质等,会出现欠压实和超压现象,从而形成流体有选择性的流动,出现流体势的变化,它是油气运移和聚集动态过程的一个体现。因此,围绕流体势演化建立岩石模型、压实方程、温度场演化模型、生烃模型、三维三相流体运移方程等,模拟出不同地质时期不同地层超压、地层压力、温度,再来计算古今流体势,划分油气运聚单元,确定含油气系统边界。评价用成因法,在盆地模拟基础上,通过对生排烃和运聚、保存条件的研究,估算油气量。

2.软件介绍

Platte River Association(美国)开发的Basin Mod 1D、2D、View、Flow、Risk等盆地模拟系列软件目前在国外应用极广,能将孔、渗、运、聚、热演化等的计算有机结合起来,另外,考虑了断层的渗透性,聚集模型能很好地模拟出油气聚集带,图形功能较强。本书主要用Basin Mod 1D、2D、View(图4-4-2~图4-4-4)。

图4-4-2 盆地模拟过程图

图4-4-3 盆地模拟工作流程图

图4-4-4 二维盆地模拟计算流程图

3.生烃压力与排烃作用模拟方法

(1)生烃压力模拟

生烃压力是生烃史模拟中的一个关键概念。因为不同成分在密度上的差异,当干酪根降解为油、气及残余物时,其结果是孔隙压力明显增加,可引起油气的快速排出和岩石破碎;另一方面,这种生烃压力也可能影响后续沉积的流体流动/压实过程。

水、油、气的密度受温度及孔隙压力的影响。干酪根的密度取决于其组分,与其成熟度也有关。根据模型的物理处理,当干酪根转变为油气时,孔隙度将增加。

孔隙变化=降解的干酪根体积-残余物体积

设残余物保持为固态,水及生成的油气占据新形成的孔隙。在这种新的孔隙中,油气水的压力近似地等于总的孔隙压力。如果孔隙压力超过破裂极限,那么物质(油、气、水)将从孔隙中及时排出,以使孔隙压力将不会超过破裂门限。孔隙度、温度、静岩压力及干酪根降解程度决定压力的大小。

在干酪根降解过程中,在?t时间内,体积变化等于:

V=mo/ρo+mg/ρg+mr/ρr–mk/ρk (4-4-1)

式中:?V为体积变化;m为质量;ρ为密度;下标o、g、r、k各指油、气、残余物、干酪根。

在计算中,密度为温度及孔隙压力的函数,干酪根的密度与成熟度有关,成熟度愈高,密度愈大。

式(4-4-1)可写成:

V=(Vo/ρo+Vg/ρg+Vr/ρr)?t–(Vo+Vg+Vr)/ρk?t (4-4-2)

式中:V指生成油气水的速率;?t为时间段。

新的孔隙由下式计算:

φ=φold+?φ (4-4-3)

式中φold为生烃前孔隙;?φ为由于生烃而增加的孔隙。

亦可写作:

φ=φold+mk/ρk–mr/ρr (4-4-4)

因此由于产生流体(油)而生成压力为:

pL=(1/cp)·(?ρL/ρL)/(1+?ρL/ρL)(4-4-5)

其中cp为液体压缩系数。

由于生气产生的压力为:

Pg=(1/2)·fg·?Ng·kk·T (4-4-6)

式中:fg为气体分子自由度;Ng为气体密度;Kk为BoltzMann常数(1.38E-16erg/k);T为温度。

因而总生烃压为:

P生烃=?PL+?Pg(4-4-7)

(2)排烃模拟

1)排出系数。对于石油,可以定骨架不可压缩性、含油饱和度在排油前后一致,有

V0=(1–φ0)=V(1–φ) (4-4-8)

华北前古近系油气战略调查与评价

式中:?V 为排出的流体体积;Cex 为烃源岩的排出系数,小数;φ0为烃源岩在生油开始后的某时刻(压实前)的孔隙度,小数;φ0为烃源岩在上述该时刻后任一时刻(压实后)的孔隙度,小数;V0烃源岩在生油开始后的某时刻(压实前)的体积,小数;V0为烃源岩在上述该时刻后任一时刻(压实后)的体积,小数。

排出系数史如下:

华北前古近系油气战略调查与评价

k=2,3,…,直到今天

式中:Cexi在埋藏时间 (等于0)时烃源岩的排出系数,小数,Cex1实际上无用,故随意设为零;Cexk在埋藏时间 时烃源岩的排出系数,k=2,3,…,直到今天;φk-1在埋藏时间 时烃源岩的孔隙度,小数,可根据烃源岩的埋藏史由地史模型算出;φk在埋藏时间 时烃源岩的孔隙度,小数,可根据烃源岩的埋藏史由地史模型算出。

而对于天然气,则应考虑排烃前后烃源岩的压力、含气饱和度。

2)排烃强度。计算单井某烃源岩的排烃强度公式为

华北前古近系油气战略调查与评价

k=2,3,…,直到今天

式中:Eex1在埋藏时间 (等于0)时烃源岩的排烃强度,104t/km2,实际上Eex1为零;Eexk在埋藏时间 时烃源岩的排烃强度,104t/km2;Eexk-1在埋藏时间 时烃源岩的排烃强度,104t/km2;E-ok在埋藏时间 时烃源岩的生烃强度,104t/km2,由生烃史模型中确定;Soir烃源岩的束缚油饱和度,小数,可取值为0.10左右;Cexk在埋藏时间 时烃源岩的排出系数,小数,由式(4-4-11)算出。

3)流体势计算。哈伯特(Hubbert,1953)最早把流体势的概念引入石油地质学,认为地下流体的渗流是一个机械运动的过程,将地下单位质量流体所具有的总机械能定义为流体势,并用下式表示:

华北前古近系油气战略调查与评价

式中:φ为流体势,J/kg;g为重力加速度,m/s2;z为相对于基准面的海拔高程,m;P为地层流体压力,Pa;e为孔隙流体密度,kg/m3;q为流体的流速,m/s。

gz表示由重力引起的位能; 表示由压力引起的压能;q2/2表示单位质量流体流动时的动能。由于地下孔隙流体流动一般很缓慢,q2/2往往忽略不计,所以地层条件下的流体势可以简单地用位能和压能之和来表示,即 。当地下流体存在有势差时,流体总是自发地由高势区流向低势区。含油气盆地中的孔隙流,除水以外还有油和气,因此除具有水势外还有油势和气势,水和油可以认为是不可压缩的流体,其密度不随压力变化,在压力变化不大的范围内,气密度也可视为不变。这样水势、油势和气势可分别表示如下:

φw=gz+P/ew (4-4-15)

φo=gz+P/eo (4-4-16)

φg=gz+P/eg (4-4-17)

油气在亲水介质中运移还受毛细管力(2б/r)的影响,因此油势和气势应写为:

φo=gz+P/eo±2б/r,此处б为油水界的张力; (4-4-18)

φg=gz+P/eg±2б/r,此处б为气水界的张力。 (4-4-19)

式中:毛细管力+号代表流体由细孔隙进入粗孔隙时毛细管力为附加动力;-号代表流体由粗孔隙进入细孔隙时毛细管力为阻力。但流体势分析主要是判断流体(油、气、水)运移的方向,如流动中各质点都不考虑毛细管力,定性上说并不影响流体运移的大方向。为简化流体势分析,目前仍按式(4-4-15)、(4-4-16)和(4-4-17)计算。

常规油气评价方法

①张国华等.1998,石油和天然气勘探地质评价规范,北京,中国海洋石油总公司。

勘探目标评价和风险分析方法是石油公司的核心技术之一。自1998年中国海油建立了《石油和天然气勘探地质评价规范》以来,对石油和天然气勘探全过程中的地质评价,尤以其中包括的勘探目标评价和勘探风险分析工作起到了促进作用,是使勘探管理工作与国际接轨的重要技术环节。勘探目标评价与勘探风险分析浸透了商业性理念和相关的评价技术,近期集束勘探方法的产生和更进一步的价值勘探的提出,就是执行这一规范的直接成果。

一、石油和天然气勘探地质评价

油气储量的增长是任何一个油公司生存、发展的根本所在,世界上的各大油气公司,无一不将油气勘探工作放在首位,并把油气风险勘探视为一种商业经营活动,力求勘探工作优质高效,即用有限的资金投入而能获得更多的、有商业开价值的油气储量。

图5-32 油气勘探地质评价程序

中国海油一直在探索一套具有自己特点的油气勘探工作和管理模式,用以具体指导海上油气勘探工作。在总结勘探经验和吸取国外油公司管理经验的基础上,按照勘探工作要革新管理、优化结构、科技进步的指导方针,于1998年编制成此《规范》。它规定了中国海油在石油和天然气勘探全过程中的地质评价阶段及各阶段地质评价的目的、任务、程序、内容以及应用的技术、标准和应用的成果和要求。它适用于中国海油所进行的油气勘探活动中的地质评价工作。

一般而言,石油和天然气勘探地质评价的全过程,系指从某一特定区域的石油地质调查开始,到提交石油(或)和天然气探明储量为止的勘探活动中的地质评价工作。根据油气勘探活动的阶段性和地质评价的目的、任务,又将地质评价全过程进一步划分为区域评价、目标评价和油气藏评价三大阶段,具体阶段划分和工作程序见图5-32,各阶段的具体含义如下。

a.区域评价阶段:即从某一特定的地理区域(可以是盆地、坳陷、凹陷或其中的某一部分)的勘探环境和石油地质调查开始,到决定是否谋求区块油气探矿权为止的地质评价工作全过程。很明显,区域评价阶段的主要目的,在于谋求获得石油和天然气探矿权。

b.目标评价阶段:即从获得区块的油气探矿权后进行勘探目标优选开始,到预探目标钻后地质评价完成为止的地质评价工作全过程。当然,目标评价的主要目的,在于发现商业性油气藏。

c.油气藏评价阶段:即从预探目标的油气藏评价方案开始实施,到提交探明储量为止的地质评价工作全过程。油气藏评价阶段的主要目的,在于落实可供开发的石油和天然气探明储量。

二、区域评价

区域评价一般按资料准备、区域地质特征分析、含油气系统分析和勘探区块选择4个阶段循序进行(图5-33)。四个阶段的具体内容如下。

图5—33 区域评价程序

a.资料准备:为区域评价收集、提供有关投资环境、区域地质背景和各项有关的基础资料。

b.区域地质特征分析:阐明评价区的构造、沉积特点及其发育演化史。

c.含油气系统分析:确定评价区含油气系统及其油气潜力。

d.勘探区块选择:确定有经济开发前景的油气聚集区块,并谋求其油气探矿权。

在评价内容中,主要包括了资料准备,具体为各种资料收集、基础资料的补充和完善、建立区域评价数据库工作;区域地质特征分析,包括区域地层格架的建立、地震资料连片解释、沉积体系及岩相分析、表层构造和断裂体系分析、基底结构和盆地演化特点分析工作;含油气系统分析包括烃源识别、储、盖层特征及时空分布、盆地模拟分析、含油气系统描述等工作;勘探区块选择包括成藏区带评价、有利区块选择、谋求油气探矿权的建议等内容。

评价要求作到成藏区带评价;油气成藏模式预测;潜在量预测;区带勘探风险分析和工程经济概念设计和评价。

最终提交的主要成果包括文字报告的7项内容、27种附图、8类附表及相关专题研究附件。

三、目标评价

目标评价一般按资料准备、勘探目标优选、预探目标钻前评价、预探井随钻分析和预探目标钻后评价5个阶段循序进行(图5-34)。在勘探程度较高的地区,勘探目标优选和预探目标钻前评价可以同步进行;在已知油气成藏区带内则当以圈闭的落实和预探目标钻前评价为重点。

5个阶段主要内容如下。

a.资料准备:为目标评价提供必要的地质背景资料和基础资料。

b.勘探目标优选:优选可供预探的有利含油气圈闭。

c.预探目标钻前评价:提交有经济性开发效益前景的钻探目标及预探井位。

d.预探井随钻分析:发现油气藏及取得必要的地质资料。

e.预探目标钻后评价:对预探目标的石油地质特征进行再认识和总结勘探经验教训,并提交获油气流圈闭的预测储量及进一步评价的方案。

评价内容主要包括资料准备,具体为资料收集、地震资料集和处理、建立目标评价数据库;勘探目标优选包括查明和落实各类圈闭、圈闭的油气成藏条件分析、圈闭的潜在量计算、预探目标优选;预探目标钻前评价包括圈闭精细描述、圈闭的油气藏模式预测、圈闭的潜在量复算、圈闭的地质风险分析、圈闭的工程经济概念设计和评价、预探井位部署建议、预探井钻井地质设计;预探井随钻分析包括跟踪了解钻井动态、随钻地层分析和对比、随钻油气水分析、钻井设计调整和测试层位建议等;预探目标钻后评价包括预探井钻后基础资料整理和分析、圈闭石油地质再评价、油气藏早期评价等项内容。

其中,十分重要的是要求对预探目标做到:圈闭精细描述、圈闭的油气藏模式预测、圈闭潜在量计算、圈闭地质风险分析、圈闭的工程经济概念设计与评价、预探井位部署建议和预探井钻井地质设计。

要求预探目标钻后评价做到:圈闭的石油地质再评价、油气藏早期评价、预测储量计算、油气藏开发早期工程经济评价和油气藏评价方案建议。

最后要提交预探目标评价报告,内容有预探目标评价及评价井钻探方案文字报告8项内容、附图16种、附表5类。预探目标钻后评价内容包括文字报告5项内容、附图15种、附表14类。

图5-34 目标评价程序

四、油气藏评价

油气藏评价按资料准备、油气藏跟踪评价和探明储量计算3个阶段实施(图5-35)。油气藏评价应是滚动进行的,随着勘探程度的提高和资料的积累,从宏观的油气层分布范围和规模等框架描述到微观的油气储集空间分布和体积等的精细描述,不断提高精度。

图5-35 油气藏评价程序

3个阶段的主要内容如下。

a.资料准备:为油气藏评价提供必要的地质背景资料、基础资料和各种条件。

b.油气藏跟踪评价:探明获油气流圈闭的油气层分布范围、规模和产能。

c.探明储量计算:提交可供商业开的石油和天然气探明储量。

主要评价内容为资料准备包括资料收集、建立油气藏评价数据库;油气藏跟踪评价包括评价井钻井地质设计、评价井随钻分析、评价井完钻跟踪评价、评价方案调整建议、油气藏终止评价报告;探明储量计算包括油气藏结构、储层性质、储层参数、油气藏特征、油气藏静态模型描述、油气藏模式研究、探明储量计算及评价、开发方案概念设计、收率研究、工程经济评价、探明储量报告的编写等。

需要注意的是,工程经济评价要包括勘探和开发工程参数,勘探和开发投资额操作费估算,经济模式和财务参数的选取,内部盈利率、投资回收期、净观值和利润投资比等指标的计算,敏感性和风险分析等内容。

最后应提交油藏终止评价报告和探明储量报告。

油藏终止评价报告包括文字报告6项内容、附图17种、附表23类。

探明储量报告按国家矿产储量委员会的储量规范和储量报告图表格式要求完成。

五、地质风险分析方法

勘探风险分析是石油公司勘探投资决策的重要参数,如前所述,勘探工作地质评价各个阶段都要进行风险分析。当然投资决策并不完全取决于地质风险的高低,还取决于石油公司的资金实力和承受风险的能力,但地质风险毕竟是投资决策中不可稀缺的基本参数。

根据多年勘探实践,并参考外国油公司风险分析经验和方法,我们确立了以地质条件存在概率为核心的地质风险分析方法。

本方法适用于中国海油油气勘探中预测圈闭的钻前评价分析,也可以用于对盆地或凹陷进行量预测时的地质风险分析。

此法的目的在于通过对形成油气藏基本石油地质条件存在的可能性分析,预测或估计目标圈闭的地质成功概率,为勘探目标经济评价和勘探决策提供依据。

一般而言,风险(Risk)通常解释为失败的可能性。油气勘探过程中的风险主要包括地质风险、技术风险、商业风险和政治风险等。地质风险(Geological Risk)指勘探者对勘探目标基本石油地质条件认识不足而导致勘探失败的可能性。而地质成功概率(Probability of Geological Success)或称地质把握系数,是预计目标的圈闭经钻探获得商业性油气发现的概率。地质风险分析(Geological Risk Ana1ysis)则是用概率统计学原理和圈闭评价方法,研究并量化形成油气藏的基本石油地质条件存在的可能性,预测目标圈闭的地质成功概率。

(一)地质风险分析方法

预测地质成功概率的方法有地质条件概率法、历史经验统计法和类比法等多种方法。这里用地质条件概率法,当然,也可以根据具体情况使用多种方法进行比较和互相印正。

1.地质条件概率法的基本依据

a.油气藏的形成需要同时具备烃源、圈闭、储层、盖层和运聚匹配等基本石油地质条件,缺一不可;

b.各项地质条件必须满足彼此互相独立的设;

c.各项地质条件存在概率之积即为该目标圈闭的地质成功概率。

2.地质条件存在概率的取值原则

a.各项地质条件存在概率的求取有多种方法,本规范取由已知与未知的联系来判断未知的原则,并强调占有资料的类别和可靠程度对分析结果的影响。

b.正确分析各项石油地质条件存在概率和资料的可靠程度是测算目标圈闭的地质成功概率的关键。要求必须掌握本区的石油地质条件和资料状况在目标评价总和研究的基础上进行地质风险分析和取值。

c.由于不同地区地质条件千差万别,使用者也可以根据各盆地的实际情况对取标准作适当调整和修改,但应予以说明。

(二)地质风险分析程序

首先对基本石油地质条件进行分析,确定或估计其存在概率;然后计算单层或多层圈闭的地质成功概率。

1.基本石油地质条件分析

a.烃源条件:①根据同盆地、同凹陷或同构造带内油气田分布情况,已钻探圈闭或井的含油气情况,油气苗和其他油气显示情况(地球物理烃类检测、化探、摇感等),确定是否存在成熟的烃源条件;②烃源岩的体积;③烃源岩中有机质的数量和质量;④烃源岩中有机质的成熟度;⑤资料类型和证实成度(地震、录井、钻井、岩心或露头以及资料的密度和质量)。

b.储层条件:①同盆地、同凹陷或同构造带内已钻圈闭相同储层的储集能力及优劣成度;②储层的沉积相和储集体类型;③储层的岩性、厚度及分布的连续性;④储层的储集类型和物性条件;⑤储层段是否有同盆地、同凹陷或同构造带内的井可供标定、模拟和对比;⑥资料类型和证实成度(地震、录井、测井、岩心或露头以及资料的密度和质量)。

c.盖层条件:①同盆地、同凹陷或同构造带内已钻圈闭同类盖层的封闭能力及优劣程度;②盖层的沉积相、岩性、厚度及稳定性;③盖层的封闭类型和垂向封堵能力;④盖层中断层的数量、性质、规模及活动时期;⑤资料类型和证实程度(地震、录井、测井、岩心或露头以及资料的密度和质量)。

d.圈闭条件:①圈闭类型及规模;②同盆地、同凹陷或同构造带内同类型圈闭的含油气情况;③断块、岩性等圈闭的侧向封闭条件和性能;④地震测网的密度和资料的质量。

e.运移条件:①油气运移通道类型,如砂岩输导层、断层面、不整合面、底辟、高压释放带等;②供烃范围内圈闭与有效烃源岩连通的路径及通畅程度;③油气运移的方式、指向和距离。

f.保存条件:①圈闭形成后构造或断裂活动对圈闭封闭条件的影响;②区域水动力条件对油气聚集的影响;③是否遭受过水洗或生物降解破坏作用;④油气是否有过热或非烃气体(CO2、N2等)的潜入;⑤油气扩散作用对油气藏的影响。

g.运聚匹配条件:①同盆地、同凹陷或同构造带内同期的圈闭是否存在油气田或油气藏;②圈闭形成时间与油气主要生成时间、运移时间的关系。

2.地质条件存在概率的评估

使用地质条件存在概率评价标准,来评定目标圈闭各项地质条件的存在概率。

3.目标圈闭地质成功概率计算

a.单层圈闭地质成功概率的计算。

单层圈闭地质成功概率为该层各项地质条件存在概率之积,即:

中国海洋石油高新技术与实践

式中:Ps为单层圈闭的地质成功概率;Pt为烃源条件的存在概率;Pc为储层条件的存在概率;Pg为盖层条件的存在概率;Pq为圈闭条件的存在概率;Py为运、聚匹配条件的存在概率。

b.多层圈闭地质成功概率的计算。

如果各层圈闭对应的各项地质条件均相互独立,则:

该目标圈闭(构造)至少有一层圈闭获得地质成功,其概率为Pas:

中国海洋石油高新技术与实践

式中:Ps1为第一层圈闭的地质成功概率;Ps2为第二层圈闭的地质成功概率;Psn为第n层圈闭的地质成功概率,为了强调主要的钻探目的层,n值一般不大于3。

该目标圈闭各层圈闭均获得地质成功,其概率为Pts:

中国海洋石油高新技术与实践

最后,为了更好地把握主要地质风险因素,提高风险预测水平,并不断完善地质风险分析方法,要求进行钻后相关数据的整理,并按要求填写地质条件的钻探结果和钻后分析,对照钻前预测验证其符合程度,分析钻探成功或失利的原因。

六、集束勘探方法

中国海油入市以来,其经营管理方式迅速与国际接轨。反应在勘探上,也实现并正在实现着一种理念的转变,即由经济遗留的“储量指标”勘探理念——“我为祖国献石油”,向市场经济“经营型”勘探理念——“股东要我现金流”转变。入市后,股市对油公司业绩的衡量标准是现金流,它体现在勘探上不仅是新增储量的多少,而是一系列的经营指标——储量替代率、桶油勘探成本和资本化率。

储量替代率:是指新增探明可储量与当年产量之比。

桶油勘探成本:是指每探明一桶可原油储量所需的勘探费用,包括管理费用、研究费用、物探费用和无经济性发现的钻井费用。这些费用需进入当年勘探成本,叫做成本化。

资本化率:指有经济性发现的钻井费用与总勘探费用之比,这部分费用不进入当年勘探成本,可在油田开发中回收,故称资本化。

储量替代率反映了储量资产的增减。桶油发现成本是衡量勘探经营总体水平的指标,在保持稳定的勘探投人,保证100%储量替代率的前提下,要降低桶油发现成本,就要降低经营管理费用和每公里物探作业费用与每米进尺的钻井费用。当然大的储量发现会导致桶油勘探成本大幅度下降,但除特殊需要,油公司更希望保持股市稳定,无需披露重大储量发现。资本化率反映了油公司所占有的勘探区块(也是一种资产)的质量,它不仅可以降低桶油成本,更重要的是表现所占有的勘探区是否具备一定潜力、储量代替率是否有保障。

要想有多的储量发现就要打更多的井,在保证桶油发现成本承诺的前提下,只有降低单位作业成本。面对发展需要的压力、投资者的压力、服务价格走向市场后的压力,必须走出一条勘探管理新路子,于是集束勘探思路孕育而生。

集束勘探是探索适应市场经济条件下多快好省的勘探新理念,主要包括以下3层含义。

a.集束部署:着眼于一个领域或区带,选择具有代表性的局部构造集中部署,用较少的工作量以求解剖这一领域或区带,达到某一确定的地质目的。

b.集束预探:基于不漏掉任何一个有经济性油气藏为出发点,简化初探井钻井过程中取资料作业和测试,加强完钻过程中的测井工作,以显著提高初探井效率,大幅度降低初探井费用,用简化预探井、加速目标的勘探方法。

c.集束评价:一旦有所发现,则根据地下情况,优选最有意义的发现,迅速形成一个完整评价方案,一次组织实施,缩短评价周期和整个勘探周期。如有商业性,使开发项目得以尽快实施。

集束评价钻探包括两类不同取资料要求的钻井,一类是取全取准资料的井,此类井要充分考虑开发、工程、油藏甚至销售部门的需要,取足取好资料;另一类井是为了解决复杂油气田面上的控制问题,需要简化其中一些环节,作为集束井评价,以求得到以最低的评价费用取全取准资料,保证储量计算和编制ODP方案的需要。

在实施集束勘探一年的时间中,我们针对一个有利区带和目标共钻探集束探井20多口,初步见到以下效果:①储量代替率可望达到151%;②资本化率39%;③桶油发现成本保持在1美元;④完成了历年来最高的和自营勘探投资——16.75亿元;⑤建井周期缩短2/3;⑥每米钻井进尺费用降低40%。

通过一年的实践,主要体会如下。

1.以经济性发现为目的,统筹资料的获取

初探井是以经济性发现为目的的,关键在于证实有一定烃类产能、有一定厚度油气层的存在,精确的测试资料、储层物性资料、原油物性资料都可留在评价井钻探中获取。这就可以在初探井中作到不取心、不测试,从而大大简化钻井程序,达到降低钻井成本的目的。

一般来说初探井的经济成功率只有10%之间,我们可以在90%左右的初探井中实现低成本探井。事实证明用电缆式测试(MDO)、加旋转井壁式取心技术,完全可以保证不漏掉有经济测试价值的油气层。集束评价更有利于有目的地取好油藏评价的资料,在进行了早期油藏评价后,我们对油气藏模式有了基本的认识,就可以有目的地安排油藏评价井资料获取方案,大大减少了盲目性。

2.集束勘探在资料问题上体现了性、目的性

集束勘探“三加三简”的有所为和有所不为的获取资料原则——抓住有无油气,有油气则加强,无油气则从简;突出经济性,有经济性则加强,无经济性则从简;区分主力层与非主力层,主力层则加强,次要层则简化。这样保证了总体资料的质量,减少不必要的繁琐取资料工作量。

3.实现集束勘探要做好技术准备

首先应加强完井电测、简化钻井测试,测井要做好电缆测试(泵抽式取样)、旋转式井壁取心和核磁共振测试的技术准备。

其次,钻井工程借鉴开发生产井优快钻井经验,对初探井简化井身结构,打小井眼,不取心,尽可能保证钻井作业的连续性,提纯钻进时间比例,用集束勘探的办法尽量减少动员费用,在拖航、弃井等环节上提高时效,降低费用,保证稳定的、高质量的泥浆性能,打好优质的规则井眼,创造良好的测井环境。

第三,评价井的测试工作中,要做好直读压力计、多层连作、油管完井等技术准备。

4.集束勘探协调了长期困扰勘探家的三大矛盾

第一,协调了加大勘探工作量与有效控制成本间的矛盾。集束勘探可实现相同的勘探成本下,多打初(预)探井,总体上必然加快勘探进程。如在合同区义务勘探工作量确定的前提下,勘探成本的降低,则意味着抗风险能力的增强。

第二,协调了不同专业间的利益矛盾。长期以来地质家想多取资料——资料越多越好;钻井工程想快——钻完井越快越好;测井公司想省——下井次数越少越好。集束勘探实现了集约性的成本控制,使各专业各得其所。

第三,协调了老石油传统与现实市场经济间理念上的矛盾。在老石油地质家的传统观念中,是取资料越多越好、储量发现越多越好、收率提得越高越好。把这些观念放在市场经济条件下,都会与勘探成本产生冲突,于是这些观念都变成了相对的、有条件的:资料——在保证不同勘探阶段起码质量要求下,取资料的工作量越少越好;储量发现——在保证勘探资本及时回收条件下越多越好,否则无须及时探明;收率——在保证现金流和盈利率条件下越高越好,否则宁可要相对较低的收率;勘探成功率——对油公司来讲,地质成功率毫无意义,油公司只要商业成功率,更关心的是勘探投入的资本化率;储量概念——不能只讲地质储量,对油公司来说更关心可储量,尤其是可作为公司资产的份额可储量。

集束勘探是我们由经济成功转向市场经济时,在经营理念上发生根本变革的表现。一年来的成功实践,不但在中国海油勘探家中产生了巨大观念上的震动,也影响到许多外国作业者,纷纷吸收或效仿集束勘探方法。集束勘探方法的产生,表明我国企业不仅可以进入国际市场,并且完全可以在市场运作中有所发现,有所发明,有所前进,创造出更好的经济效益。

在2002年中国海洋石油勘探年会上,将集束勘探发展为价值勘探的一部分,这是勘探工作进步的表现。这一新生事物的出现,使公司上市后出现了新情况:结束了国有独资的历史,十分关注投资的收益、储量增长的压力、成本的压力等。如此,必须对过去传统的勘探理念进行重新审视:由过去的地质调查研究型,变为经营油气实物的经营型,要创造经营价值。所以,价值勘探是一种以价值为取向的勘探理念,具体地说,每项工作以是否增加公司或股东的价值,作为决策的依据,即勘探的每个环节,以创造出更多的价值作为决策的出发点,勘探工作将围绕价值中心来进行。这也体现了勘探工作本身是发展的、动态的,在勘探工作不断进展中,随时拓宽、发展勘探方法,以促进海洋石油事业不停顿地、持续发展。

不同叠合构造单元烃源岩动态分析

(一)方法应用现状

在国内外油气评价中,曾用过多种评价方法计算量,总体上可归为成因法、统计法、类比法三大类50余种方法。在国外由于各部门职能不同,因此用的评价方法也各有侧重和差异。如美国联邦地质调查局(USGS)代表职能,负责美国各含油气盆地,乃至全球的评价工作,选择的方法主要为统计法和特尔菲法。国外石油公司为各公司经济利益和决策勘探部署服务,所用的评价方法主要是类比法,其次为统计法。评价对象是以招标区块和目标区为主,重点计算可量和可储量。中国油气评价工作,在1994年以前曾代表和企业双重职能做全国性评价工作:用的评价方法以成因法为主,其次为统计法和类比法。2000年以后随着各石油公司经营体制的变化及国际交流的需要,油气评价方法则广泛用类比法和统计法。但无论国内、国外,过去用的评价方法均比较单一,各有应用侧重点,未能形成配套的油气评价方法体系。

(二)用的评价方法

按照《常规油气评价实施方案》规定,在类比法、统计法和成因法三大类几十种方法中,选择应用了15种评价方法:

(1)成因法:包括盆地模拟法、氯仿沥青“A”法、产烃率法、生物气模拟法;

(2)类比法:包括体积丰度类比法、面积丰度类比法、有效储层预测法、多种地质因素分析法;

(3)统计法:包括油田规模序列法、广义帕莱托分布法、发现过程模型法、地质模型—统计模型综合法。

根据评价盆地的勘探程度和地质特点选择适用的评价方法。其中,中—高勘探程度盆地以统计法、成因法(盆地模拟)为主,兼类比法;中等勘探程度的盆地可以同时用统计法、类比法和成因法;低勘探程度盆地以类比法为主,兼成因法。类比法的使用必须建立在精细的刻度区解剖研究基础之上,通过细分评价单元,与地质背景和成藏条件最相近的刻度区建立一一对应关系,确定评价区内诸如油气丰度等关键性的评价参数,最终计算出客观合理的油气量。方法的选用体现了多种方法的配套性、实用性和针对性。

评价过程中,中国石油天然气集团公司、中国石油化工集团公司、中国海洋石油总公司和延长油矿管理局在统一使用面积丰度类比法和盆地模拟法的基础上,在中高勘探程度盆地加强了统计法的应用,并突出了方法的组合和交叉使用,以达到相互验证的目的;广州海洋地质调查局、青岛海洋地质研究所、中国地质科学院地质力学研究所、成都理工大学和成都地质矿产研究所在其所承担的中低勘探程度盆地评价中,主要用了类比法和成因法中的氯仿沥青“A”法、产烃率法和盆地模拟法;塔里木盆地评价课题组在中国石油和中国石化各自评价基础上,根据交叉评价的需要,用类比法进行评价;渤海湾盆地评价课题组在中国石油、中国石化和中海石油各自评价的基础上,根据任务要求,分坳陷、凹陷进行了全渤海湾盆地油气的汇总,并对部分凹陷进行了评价。

各评价单位方法使用情况见表4-1。

(三)评价方法体系建立与应用

为满足不同勘探程度、不同评价单元(盆地、含油气系统)以及提供各类油气系列的要求,借鉴国外成熟应用的评价方法和国内广为应用的评价方法,归纳为三大类30余种评价方法,明确了各种方法的使用和方法配套组合应用效果,从而建立起适合中国地质特点的油气评价方法体系。

根据评价单元勘探程度、地质条件以及占有资料的多少,确立主打的评价方法和方法,合理、配套、组合应用,将各种方法计算的量进行特尔菲加权处理,应用效果好。例如中—高勘探程度,用盆地模拟法为主要方法与类比法、统计法组合应用;中—低勘探程度盆地,用面积丰度类比法和成因法组合应用;大面积岩性油气藏分布区,则用以有效储层预测法、饱和探井法为主,辅以面积丰度类比法和运聚单元法组合(表4-2)。

表4-1 新一轮全国油气评价方法使用情况

表4-2 不同类型及不同勘探程度盆地量计算方法

续表

(四)评价方法的发展

在本次油气评价中,类比法的应用,统计法中有效储层预测法的应用以及盆地模拟方法的应用都有新发展。在类比法中,以建立的各种类型刻度区样本点为基础,分构造单元、分层、分含油组合类比,解决了油气时空分布的预测问题,大大提高了评价区预测精度。有效储层预测法,解决了针对大面积岩性油气藏的预测问题。成因法中的盆地模拟技术,是中国广为应用的评价方法,在运聚史模块上,发展了量化的油气动态模拟,用大量刻度区的资料直接计算运聚系数,经统计分析建立预测模型,从中获取科学、客观的运聚系数取值标准和条件,从而提高盆地模拟法油气预测精度。

天然气的成分与特性

区域构造演化史研究结果证明,印支期—喜马拉雅期构造运动,在华北东部表现较为强烈,差异块断活动造成构造的分隔性,中、新生界沉积厚度变化极大,古地温场的不均衡性愈加明显。在前面章节中已对前古近系所经历的构造-热史进行了详细的论述,并将研究区受印支期之后的构造运动影响划分了3大类6小类的不同叠合构造单元。

由生烃动力学参数与精确的热史数据相结合,可以算出烃源岩形成以来,受地质作用而发生的所有的排烃过程。根据所标定的生烃动力学参数,结合及不同地区源岩所经历的沉积埋藏史和热史的研究,分别计算不同层位源岩在不同时刻所生成的油、气的转化率(表4-3-3),从而对不同叠合构造单元烃源岩的生烃过程进行动态分析。其中中—新元古界分布局限,仅位于冀北和冀中凹陷北部地区,其叠合构造单元为II3型,将在II3型叠合构造单元中对其进行详细描述,对寒武系—奥陶系、石炭系—二叠系和中生界烃源岩分不同叠合构造单元进行选择系统探讨。

表4-3-3 不同层位生烃动力学计算分布地区一览表

1.Ⅰ型叠合构造单元

为持续沉降型,该类型叠合构造单元在中、新生代均处于沉降区,接受沉积。其生烃-埋藏演化史可分2种情况:一种过早过快的继承性沉降则往往导致烃源岩过早成熟而失去生油能力,甚至生气能力。以临清坳陷的邱县凹陷为例,早—中三叠世,邱县凹陷继承了晚二叠世的古地理格局,只是盆地范围有所缩小,地层横向沉积稳定,厚度变化不大。印支期由于受华北板块与扬子板块自东向西碰撞的影响,华北地区东部抬升早、剧烈,西部抬升晚,邱县凹陷表现为大型的褶皱隆升,但下—中三叠统剥蚀相对较小。早—中侏罗世本区继承了晚三叠世的褶皱背景,于向斜低洼处沉积了数百米厚的下—中侏罗统。就晚侏罗世—早白垩世盆地而言,现今邱县凹陷深部下白垩统自东向西超覆减薄于广宗、新河凸起之上。早白垩世末期本区又发生一次褶皱运动,邱县凹陷处表现为向斜核部,沉积了近千米的上白垩统,进入古近纪本区开始表现为明显的断陷盆地发育时期,邱县凹陷西部沉积了巨厚的古近系。

根据埋藏史和到达不同深度样品的有机质成熟度可以对热史进行较为精确的标定,生烃动力学计算邱县凹陷坳陷深部石炭系—二叠系煤系烃源岩在240Ma(海西期)已经进入生烃门限,150Ma以前,甲烷转化率即达到了0.94,此后的持续深埋使得甲烷生气转化率在130Ma前即基本达到100%(图4-3-9),即石炭系—二叠系烃源岩在早白垩世已完成生烃过程,此后不再具备生烃能力。因此继承性沉降有可能存在主生烃期过早的问题,而过早完成的生、排烃过程对油气藏的保存是不利的。这种条件下烃源岩有机质成熟度一般较高。但如果现今仍处在生气窗,则对生气是有利的,仍为有效的气源岩。如临清坳陷靠近斜坡的位置,喜马拉雅期至现今仍有气态烃的生成。

图4-3-9 临清坳陷邱县凹陷石炭系有机质成熟演化及气态烃转化率

另一种情况是黄骅坳陷的乌深1井同样经历继承性沉降,但降幅缓慢。生烃动力学计算结果表明奥陶系烃源岩在印支期末Ro值仅为0.7%,燕山期末也仅为0.95%,生油转化率仅为0.2,喜马拉雅期以来的持续沉降也仅使有机质成熟度达到了1.65%,喜马拉雅期以来奥陶系烃源岩还有液态烃的生成(图4-3-10)。由此可见,喜马拉雅期以前的小幅沉降对油气生成不利影响较小。而根据对于乌深1井J1+2烃源岩生烃动力学计算结果来看,现今J1+2地层EASYRo值仅为0.77%,相对来讲有机质成熟度较低,甲烷转化率仅为0.08(图4-3-11),生油期主要为17.4Ma至今,且现今仍处在生油阶段。因此如果有机质总量较大,或后期沉降速度增大,埋深厚度较大,仍有可能排出相当数量的烃,并形成油气藏。

2.Ⅱ型叠合构造单元

该构造单元为复杂叠合型,在中、新生代时期,有的阶段处于沉降区,有的阶段处于隆升剥蚀区,又可细分为中沉新剥型(Ⅱ1)、中复新沉型(Ⅱ2)、中复新剥型(Ⅱ3)和中剥新沉型(Ⅱ4)4种次级类型。

图4-3-10 乌深1井奥陶系烃源岩成熟度演化图

图4-3-11 黄骅坳陷乌深1井J1+2地层有机质成熟度及甲烷转化率

(1)Ⅱ1型(中沉新剥型)叠合构造单元

这种叠合构造单元主要位于中生代坳陷区,中、古生界源岩在白垩纪末期之前可能就已经历了初次或二次生排烃,古近纪长期处于剥蚀状态,不可能再次生排烃,而且造成了早期形成的油气藏破坏,石油地质条件不利。Ⅱ1型叠合构造单元较典型的例子是临清堂邑凹陷(图4-3-12),堂邑凹陷奥陶系烃源岩在燕山期末有机质成熟度达到1.6%,生油转化率为1,达到终点,而后地壳抬升,地层遭受剥蚀,再无生烃过程。

图4-3-12 临清坳陷堂邑奥陶系烃源岩有机质成熟演化及生烃转化率图

(2)Ⅱ2型(中复新沉型)叠合构造单元

这种叠合构造单元中生代沉积厚度不大,中生代末期前古近系源岩热演化程度不高,多在古近纪末期或新近纪初期达到初次或二次生排烃,为有利的生烃叠合构造单元之一,目前在多个Ⅱ2型(中复新沉型)叠合构造单元发现了源自前古近系源岩的油气,以冀中坳陷的苏桥地区、武清凹陷和黄骅坳陷的孔西潜山为例进行动态分析。

冀中坳陷的苏桥地区、武清凹陷在早—中三叠世本区继承了晚古生代以来的构造格局和沉积特点,地层横向沉积稳定;晚三叠世受印支运动影响,本区整体抬升遭受剥蚀;早—中侏罗世本区再次进入区域性沉降阶段;晚侏罗世—早白垩世冀中坳陷整体发育一个大型的背斜带,从而使得苏桥-文安地区整体东倾,沉积了数百米厚的晚侏罗世—早白垩世地层;晚白垩世受区域压应力影响,本区整体抬升遭受剥蚀,晚侏罗世—早白垩世、早—中侏罗世地层均被剥蚀殆尽,并剥蚀掉了部分早—中三叠世地层;新生代古近纪霸州凹陷控凹的牛东断层开始活动,本区整体西倾,进入断陷盆地发育阶段;新近纪—第四纪本区进入整体坳陷发育阶段。经过动力学计算,苏8井石炭系有机质成熟度最高为Ro=1.12%(图4-3-13),最高地温在158℃左右。但有机质甲烷的转化率仅为0.226,C2~C5气态烃的转化率为0.54左右。而武清凹陷石炭系在喜马拉雅期以前受热作用较小,甲烷转化率不足0.02;65Ma以来,地层快速沉降,可达10000m以上,生烃量持续增加。目前甲烷转化率基本接近1.0,即烃转化率消耗殆尽。而乙烷的转化率在30Ma即已达到90%以上(图4-3-14)。可见,后期沉降速率对油气的生成具有较大的影响。

图4-3-13 冀中坳陷石炭系苏8井有机质成熟度演化及生烃转化率

图4-3-14 冀中坳陷武清凹陷石炭系成熟演化及气态烃转化率

孔西潜山带在早—中三叠世本区继承了晚古生代以来的构造格局和沉积特点,地层横向沉积稳定;晚三叠世受印支运动影响,本区整体挤压抬升剥蚀,早—中三叠世地层被剥蚀殆尽,还剥蚀掉了部分古生代地层;早—中侏罗世逆冲断层的活动性有所减弱,沉积了数百米的下—中侏罗统;晚侏罗世—早白垩世沧东断层发生了负向反转,转为张性伸展,早期活动性较低,沉积了较薄的上侏罗统—下白垩统;晚白垩世受燕山运动尾幕影响,本区整体抬升剥蚀,部分地区上侏罗统—下白垩统被剥蚀殆尽,并剥蚀掉了部分下—中侏罗统;古近纪沧东断层开始了大规模的伸展活动,本区进入断陷盆地发育阶段,地层沉积具有单断式盆地发育特征,自北西向南东方向超覆;新近纪—第四纪沧东断层活动性减弱,并逐渐消亡,本区进入区域性坳陷演化阶段。据生烃动力学计算结果表明黄骅坳陷歧古1井有机质成熟度所对应的EASY Ro值为1.09%,处于生油阶段。歧古1井生油过程可分3个阶段:245~230Ma;123~Ma及14.2Ma至今。奥陶系烃源岩在245~230Ma(海西期)发生一次生烃作用,但生烃演化幅度小,生烃量少,阶段油转化率仅为0.09,晚三叠世的构造抬升使得生烃作用停止,在123~Ma(燕山期)进入二次生烃阶段,生油转化率为0.34,随后晚白垩世的构造抬升使其生烃停止,古近纪本区进入断陷盆地发育阶段,古近纪末期至新近纪寒武系—奥陶系埋深已超过3000m,于新近纪—第四纪发生了大规模的二次生烃作用,14.2Ma至今为成油转化率可达0.5以上(图4-3-15)。且歧古1井奥陶系烃源岩目前仍在生烃,但仅具有较小的生烃潜力(为原始样品生烃转化率的0.05)。

图4-3-15 歧古1井奥陶系有机质成熟演化及生烃转化率

(3)Ⅱ3(中复新剥型)型叠合构造单元

这种叠合构造单元中生代沉积厚度不大,中生代末期前古近系源岩热演化程度不至过高,但是由于古近纪长期处于剥蚀状态,不可能再次生排烃。在中生界尤其是J3+K1本身盖层条件较好的情况下,若后期改造程度较弱且前古近系源岩达到了生排烃的程度,也有可能形成古生古储型原生油气藏,典型如冀北和冀中北部地区和下辽河坳陷西部凹陷的宋家洼陷。

蓟县系铁岭组、洪水庄组、青白口系下马岭组有机质丰度相对较高,有机质类型较好,同时成熟度不高,有利生烃,为中—新元古界主力烃源岩层系。早元古代末,冀北和冀中北部开始了华北地台初期坳拉谷的发展演化过程。中、新元古代期间本区地壳的活动性和岩浆活动减弱,没有明显的褶皱作用,但升降活动仍相当频繁,差异升降活动也很明显。本区中、新元古代冀辽坳拉谷的沉积被限制在北面的内蒙古隆起、西面的五台隆起和东南面的内黄-渤海隆起之间。坳拉沉积区与周线隆起区长期继承性发展。至三叠纪之前,华北地区为稳定克拉通内部沉降型盆地,沉积了一套岩性厚度横向稳定的海相、陆相和海陆交互相地层。印支期,该区遭受强烈的挤压作用,产生了大量的推覆构造,并对地层残留起控制作用。燕山期,该区构造活动强烈,产生大量断裂,对其有明显的改造作用。新生代期间,由于张性或张扭性断裂的差异性活动,导致了断块升降的显著差异。北部地区(燕山地区和太行山北段)主要表现为抬升,南部平原区(第四系覆盖区)主要为下降。北部地区断裂活动相对较弱,南部地区相对较强。正是由于这种差异性造成了对中—新元古界改造程度的不同,表现为北弱南强。

据生烃动力学计算结果表明,北部平泉地区洪水庄组有机质成熟度Ro目前为1.3%(图4-3-16),对于Ⅰ型干酪根而言,已达到生油上限,不再具备生油能力。平泉地区主生烃期在210~130Ma之间,生油的转化率为100%,而生气的转化率也达到0.7,但130Ma之后即抬升,并终止生烃(图4-3-17)。从这一点来讲,平泉地区这种凹陷类型对烃类的保存是不利的。在130Ma后,地壳经历大规模的构造运动,可能造成油、气藏无法保存。同样,这种现象对于其他中—新元古界而言,也存在相同的问题。铁岭组有机质成熟度略低,但也达到1.27,其生油转化率基本达到100%,而生气转化率达到0.68,主生烃期和洪水庄组相同。下马岭组有机质成熟度更低,约为1.19%,而生油转化率同样可达1,生气转化率达到0.58,主生烃期与前两者相同。

图4-3-16 洪水庄组有机质成熟度演化史

图4-3-17 平泉地区洪水庄组生油、生气转化率

冀中京101井则受喜马拉雅期构造运动作用较大,洪水庄组烃源岩现今有机质成熟度Ro为0.95%(图4-3-16)。古地温值表明,本地区有机质进入成熟的时间较晚。到二叠纪末时,各烃源岩层地温还低于门限温度,仅10.8~19.3℃,没有成熟,中生界缺失。古近纪末各烃源岩层地温达到82.6~90.3℃,超过门限温度,主生烃期在36~25Ma,这一阶段洪水庄组生油转化率达到0.92,而此前则几乎为0,生气转化率则为0.31(图4-3-18),冀中京101井铁岭组有机质成熟度为0.93%,主生烃期生油转化率为0.89,生气转化率为0.28左右。下马岭组有机质成熟度为0.83%,主生烃期生油转化率为0.63,生气转化率则更低,仅为0.15左右。说明本区中—新元古界烃源岩进入古近纪后才开始大量生油。对比2个地区中—新元古界烃源岩生烃过程,可以看出,埋藏深度是这两个地区烃源岩生烃过程的控制因素。

图4-3-18 冀中京101井洪水庄组生油、生气转化率

自早古生代开始,宋家洼陷总体沉积较薄,晚古生代末期表现为低隆起。早—中三叠世至晚三叠世受印支运动影响,本区褶皱隆升遭受剥蚀。至晚侏罗世晚期,宋家洼陷仍未接受沉积。早白垩世构造运动表现为伸展作用,宋家洼陷进入强烈的断陷盆地发育期,开始形成,早期以强烈的火山喷发为主,中、晚期主要发育一系列的北北东向展布的断陷盆地,以湖相、沼泽相建造为主,据生烃动力学计算结果可见(图4-3-19),中生界烃源岩在燕山期末已经进入生烃门限,生烃时期在105~70Ma,Ro由0.5%升至0.66%,生油转化率最大可至0.2。晚白垩世受燕山运动尾幕影响本区结束了断陷盆地发育阶段,整体挤压抬升遭受剥蚀。进入古近纪以来,宋家洼陷处于具断层较远的凸起地区未接受沉积,继续遭受剥蚀,生烃过程停止,直至新近纪整个华北东部进入区域性坳陷沉降阶段才继续下沉接受沉积,但较薄的埋深和较低的地温梯度使中生界烃源岩再也没有发生生烃过程。

图4-3-19 辽河坳陷宋1井中生界有机质成熟度演化及生油转化率

(4)Ⅱ4型(中剥新沉型)叠合构造单元

这种叠合构造单元主要处于中生代沉积凸起区或在中生代没有接受沉积,前中生代源岩均在古近纪末期或新近纪达到二次生排烃。以东濮坳陷为代表对此类叠合构造单元进行动态分析。

东濮凹陷在早—中三叠世基本继承了晚古生代以来的沉积格局,只是盆地范围有所缩小,转为大型内陆坳陷发育阶段,总体而言,地层横向沉积稳定,厚度变化不大。晚三叠世印支期渤海湾盆地开始进入整体挤压隆升阶段,本区位于兰聊大断层的西侧,下—中三叠统剥蚀相对较小;燕山期北部边界马陵断层(J3+K1期北倾正断)的影响东濮坳陷仍然表现为隆升剥蚀,直至新生代古新世以后才开始再次下陷接受沉积;古近纪沙四期之后沉积了沙河街组地层,古近纪末期渤海湾盆地区域性隆升剥蚀,至新近纪各断层活动性普遍降低,趋于消亡,进入坳陷盆地发育阶段,沉积了近1000m的新近纪—第四纪地层。文留地区燕山期三叠系剥蚀量达1830m,历经1.8亿年,煤系以上地层剖面中又无良好封盖层,一次生烃期间运移出来的天然气很难保存下来。但经剥蚀后,石炭系—二叠系煤系地层埋深仍达1000~1700m,煤系有机质和煤层吸附气得以保存。古近纪时期构造沉积分异加大,文留中央隆起带下古近系沉积速率为124.5m/Ma,最大沉积厚度3300m;而两侧洼陷下古近系沉积速率达226.4m/Ma,沉积厚度超过6000m,由此导致文留地垒带与两侧洼陷带石炭系—二叠系煤系地层埋藏受热史不同,二次生气发生的时期和强度不一致。

据生烃动力学计算结果表明,文留中央古隆起石炭系—二叠系烃源岩在喜马拉雅期以前甲烷转化率仅为0.05左右(图4-3-20),而喜马拉雅期以来持续沉降,在20.7Ma甲烷转化率达到0.51左右。但此后地壳再次抬升,中止生烃。而喜马拉雅期以来乙烷的转化率为0.12,至20.7Ma地壳抬升停止生烃时,乙烷转化率达到了0.87。前梨园凹陷石炭系—二叠系烃源岩在喜马拉雅期以前气态烃生烃特征与文留中央古隆起相似,甲烷转化率仅为0.07,略高于古隆起,乙烷转化率此时达到了0.2左右。自喜马拉雅期以来剧烈的沉降作用,使石炭系—二叠系煤系烃源岩大量生烃,在23Ma左右,甲烷转化率即达到0.99,而乙烷转化率在35Ma即达到0.99(图4-3-21),此后便迅速裂解,在20Ma左右乙烷即完全裂解,使得此时生成的天然气具有很高的干燥系数。由此可见,生烃量与沉降深度有直接关系,因此前梨园凹陷甲烷转化率明显大于文留中央古隆起。

图4-3-20 东濮坳陷文留中央古隆起石炭系有机质成熟演化及气态烃转化率

图4-3-21 东濮坳陷前梨园凹陷石炭系有机质成熟演化及气态烃转化率

3.Ⅲ型叠合构造单元

该构造单元为持续隆剥型,在中、新生代均处于隆升区,遭受剥蚀。毫无疑问,持续隆剥型对有机质生烃转化来讲意义不大,隆起构造主要油气意义在于形成油气圈闭。纵使这种构造体系下的烃源岩有过生烃的过程,由于生烃期在中生代以前,在后期的多期构造运动中,可能也早已破坏殆尽。

根据以上不同叠合构造单元生烃动力学动态评价来看,有机质生烃与热史具有直接关系,而热史受控于埋藏史及地温梯度,因此通过盆地埋藏史类型的分析即可以对生烃史、生烃特征给出简单的评价,但详细的评价则需通过生烃动力学计算来进行,各阶段的埋深及地温梯度是主生烃期及生烃转化率的决定因素。总体来看,生烃动力学结果表明大多数凹陷的寒武系—奥陶系、石炭系—二叠系烃源岩在喜马拉雅期都具有明显的二次生烃现象,二次生成甲烷的量一般都超过总生烃量的一半以上,有些盆地甚至是主要生烃时期,部分地区生烃转化率已至终点,中生界烃源岩主要为一次生烃。喜马拉雅期以来地壳沉降对生烃最为有利的,而前期地壳浅埋为喜马拉雅期生烃保留了物质基础,因此Ⅱ2型和Ⅱ4型埋藏模式对生烃,尤其是生油最为有利,同时由于喜马拉雅期二次生烃成藏时间短,因而散失较少,具有较好的保存条件。目前已在Ⅱ2型和Ⅱ4型构造叠合构造单元发现了源自前古近系的油气藏,如冀中坳陷苏桥-文安地区、黄骅坳陷的孔西潜山和东濮坳陷的文留气田。此外,对于持续沉降的I型叠合构造单元,如果早期沉降速度小,沉积厚度薄,也是有利的前古近系烃源岩生烃区,如乌马营气藏。

天然气水合物简介

1.2.1 天然气的类型

天然碳氢气体是石油的固定伴生物,或者以自由积聚的形式出现,构成气顶,或者溶解在石油中,构成它的馏分。组成天然气矿床的气体成分有甲烷、重碳氢化合物、氧、氮、硫化氢,有时也有一定数量的氩和氦。溶解于石油中的植物组分基本是烃族C1—C6,即甲烷、乙烷、丁烷、戊烷、己烷,包括烃族C4—C6的同分异构体。溶解气体中所含的重烃达到20%~40%,少数情况下达到60%~80%。溶解气体中的非烃类组分通常是氮和含硫化氢、氩、氦混合物的碳酸气。氮的含量从0到30%不等;CО2 含量在 0 到 10%~15%之间,H2S含量在0到6%之间。氢气和惰性气体含量很低。

碳氢化合物气体是天然气的组成部分,其中最常见的是甲烷(CH4)、氮气(N2)和碳酸气(CО2),它们都是在化学和生物化学过程中形成的(表1.9)。

表1.9 天然气组分的平均含量

1.2.2 天然气分类

最先提出天然气分类的是威尔南斯基(Вернадский),分类的主要依据是:① 形态,也就是气体在地球中的存在形式;② 化学成分;③ 形成历史。

1)根据气体的存在形态分为:在岩石孔隙中的含量;游离态(空气中);气体流——存在于火山活动、构造运动及地表中;气体蒸发;气体的液态溶液(存在于大洋、湖海、江河等各种水体中);气体的固态形式(被岩石和矿物吸附的气体)。

2)威尔南斯基根据其形成历史把天然气分为以下几类:地表气体;高温形成的气体;伴随构造运动过程渗透到地表的气体。

他把这些构造运动形成的气体按照组成成分分为氮气流、碳酸气流、甲烷气流、氢气流。

3)索科洛夫(Cоколов)根据天然气在自然界中的存在形式和化学成分对其进行了最详细的分类,参见表1.10。

4)按来源把气体分为两种——游离态和溶解气体(Бакиров и др.,1993)。游离态的碳氢化合物气体可能呈以下几种形式存在:① 在单纯的气体矿床,而且在某些情况下这些气体矿床在同一个油气带是油气带与石油带交替出现,而在另一些情况下集中于单独的含气带;② 游离态——存在于石油矿床的气帽中。

溶解气体可以存在于石油中和地下水中。

但是游离态和溶解气体之间不存在明显的界限,因为在油气田气帽和石油及冲刷矿床的地下水之间存在着一个动态的相平衡。

表1.10 天然气体的分类

续表

1.2.3 天然气矿床的气体组成

1.2.3.1 碳氢化合物

天然气矿床的碳氢化合气体主要由甲烷(CH4)和数量不定的混合物组成,混合物包括重同系乙烷C2H6,丙烷C3H8,丁烷C4H10及微量的戊烷和己烷。在石油矿床的气体中可能存在着液态的碳氢化合物,比C6更重。

重碳氢化合物的含量(从C2H6开始)取决于以下几个因素:① 原始有机物质的成分;② 有机物质的退化程度;③ 聚积过程。岩石封闭期所包含的吸溜气体可以提供重要的信息。

天然气体的碳氢化合物成分的特点是标准的及同构的丁烷和戊烷含量的千差万别,这取决于一系列的因素:有机物质的成分、退化的程度、气体矿床岩层的温度、压力条件等。

在碳氢化合物的组分中也会遇到碳酸气(CО2)、氮气(N2)、硫化氢(H2S)、氦气(Hе)和 氩气(Ar)。

为了测定天然气的碳氢化合物组分引入“干燥指数”这个概念——甲烷相对于其同族数量的百分比,同族也就是CH4/(C2H6及以上)。天然气的干燥指数也是其聚积方向的指标。因为甲烷的特点就是极其稳定,那么随着分子量的增加其聚积速度就减慢。

1.2.3.2 同位素

天然气的同位素组成。正如希尔威尔门(Cильвермен)所指出的,甲烷、乙烷、丙烷等含量最丰富的是同位素13C。在甲烷和乙烷之间存在着明显的突变,以后13C分子量的增加不明显。氮的同位素是14N 和 15N。根据赫令格的分析,同位素比重的特点是富15N,按照这个标准是大气中的氮。他确认,对于石油、岩石有机物质和碳氢化合物气体,15N相应地发生变化,其同位素组成分别为×0.7%~1.4%、0.1%~1.7%、×1%~1.5%(表1.11)。

表1.11 天然气体的物理特性

有关天然气中硫的同位素组成,潘基纳亚通过研究得出这样的规律:随着地质年龄的增加硫重同位素所占的比重减少。此外,在形成硫化氢时,硫酸盐的微生物还原过程可能会表现出硫同位素32S/34S值的明显波动。

1.2.4 天然气的主要物理化特性

气体可以在孔状及裂隙状岩石中流动,而且可能通过岩石进行扩散。此外,气体可能溶解在石油和水中,从而在地壳中运移。气体的这些特性取决于它们的一系列物理特性,表1.12列举出了其中几个特性。

1.2.4.1 气体的溶解

气体的溶解取决于一系列的因素:压力、温度、化学成分、地下水中盐的浓度。在压力小于5 MPa的条件下符合亨利定律:被溶解气体的数量与压力机溶解系数成正比。当压力增大以及气体成分复杂时,这种制约关系将变得复杂多样。总的说来,压力增加,气体的溶解度增大。

气体溶解度对温度的依赖关系如下:温度低于100 ℃时为反比例关系,高于100 ℃时是正比例关系。尤其是非极性气体(碳氢化合物和氮气)在高压下溶解度随着温度的增加而升高。

气体的化学成分也对溶解度有影响:水中极性气体的溶解度比非极性气体的溶解度要高出很多:二氧化碳在20 ℃时的溶解度相当于甲烷溶解度的27倍,是氮气溶解度的58倍。

1.2.4.2 岩石圈对天然气的吸存方式

岩石圈中对天然气的吸存有几种形式(Бакиров,1993)。气体被吸存在坚硬的矿物岩石及有机体中。被吸存的气体存在于裂隙的表层或者岩石的孔隙中,岩石深处还有被吸存的气体。后者可能以气泡的形式存在于岩石晶体中。

1.2.4.3 聚积

天然气(地壳气态矿物)学说的创始人是韦尔纳茨基(Вернадский)院士。他把天然气看作是自由聚积并在大气圈和地壳之间交换的产物,认为“地壳”的演化是天然气不断混合的过程,包括垂直方向,也包括水平方向的运动。在这个过程中,自然聚积从地球静压力高的区域趋向静压力低的区域。

气体的聚积导致某些构造中的气体贫乏,而在另外一些构造中又出现富集。如果在这种情况下形成天然气或者石油和天然气的大量聚积,那么这就被称作矿床,也就是石油和天然气矿床——这不是它们生成的地方,而是有利于其矿床形成的地方。

气体的聚积有各种形式:扩散、渗透、漂浮、涡流、液态下气体的运移。

扩散可能实际发生在任何环境:气体在气体中,气体在水中,气体在固态物质中。扩散时气体的交换可能发生在穿透岩石、液体或者气体的封闭孔隙中(彼此隔绝)。扩散的过程符合福柯定律:扩散与气体聚积梯度方向呈现正相关关系。随着气体物质分子的扩大,扩散系数降低,而随着温度的升高而扩大。

渗透(或者过滤)是最活跃的迁移形式,发生在有孔洞和缝隙相通的各层之间,构成一个开放的体系。渗透的发生受压力差影响,符合达西定律。显然,气体在渗透时的迁移比扩散时要显著得多。比如,甲烷中截面压差为每100 m2 2 个大气压:在格罗兹内或者巴库型砂岩或者粘土中,渗透率为0.03~0.04 D时,每平方千米的表面会向大气中散逸大于1 m3 的气体。或者在一百万年间散逸大于10亿m3 的气体。可惜这个过程既不能避免,也不能逆转,因此气体的积聚和矿床的形成只能在圈闭构造中,渗透层或者构造被实际的不透水层覆盖。在这种绝缘构造中气体的迁移运动完全没有终止,但是扩散代替了渗透,这个过程在几百年或者几百万年的过程中能够大大缩减矿床气体的藏量。

在自然界中不存在严格意义上的运移方式划分。根据运移机制的不同分为以下几类:

1)渗透式:① 以连通孔洞及裂隙为通道;② 以部分被水填充的孔洞及裂隙为通道;③ 与水合为一体(气体溶解在水中)。

2)扩散式——以被其他气体充满的孔洞或裂隙为通道。

3)渗透-扩散式。近期的研究非常关注液体中气体的运移:在漫长的时间里多次受到内动力(热力)作用的构造中含有水或者凝析油,其中的气体随之运移。这种构造可以是断裂带或者盆地,或者火山颈,由于热液物质的壳下喷射使得石油和天然气变热,并且随着气液热流的形成而富含内源气体,这个过程中进行着物质分异:富含轻质成分的处于运移的前缘,而富含较重成分的处于运移的后部或者侧翼。

这个过程中热液组分很容易溶解在气体中——随着在冷却积聚地带的进一步冷凝转变为气态物质。

气体在液体中的漂浮是多相液体的渗透现象。在大气层中,较轻的气体漂浮在较重的气体上面。在岩石的孔洞和裂隙中,气体以气泡的形式上浮。压缩至10 MPa的气体物质质量相当于同样体积的水质量的十分之一,这就是气体在水或石油中具有浮力的原因。

气体的涡流运动是气层中低层所特有的。

可溶状态下水对气体的运移在水圈和沉积层中起着巨大作用,尤其是在气体矿床的形成中所起的作用更大。

LNG前景如何

王力锋

(中国石化石油勘探开发研究院无锡石油地质研究所,无锡214151)

摘要 天然气水合物的发展历史不过200 多年时间,而真正得到科学界和工业界重视的时间则更加短暂,仅有60多年而已。但在能源问题突出严重的当今社会,天然气水合物作为下一代清洁的非常规能源却正以飞快的速度赢得各个领域的不同程度的重视。本文以简述的形式,回顾天然气水合物的发展历程,着重于天然气水合物的现状、未来的发展方向以及各国策略分析。

关键词 天然气水合物,非常规能源,能源政策

A Brief Introduction to Natural Gas Hydrates

WANG Li-feng

(Wuxi Research lnstitute of Petroleum Geology,SlNOPEC,Wuxi214151)

Abstract The history of research on natural gas hydrate is not more than two hundred years and the time for it to get scientific and industrial solid concerns essentially is only of sixty years.But under the coming global energy crisis,the studies of natural gas hydrate which is regarded as potential new unconventional resources he been growing dramatically in all fields.As a brief introduction,we show reviews on its history,current situation,future perspective and energy policies all over the world.

Key words natural gas hydrate unconventional resources energy policies

1 简介

天然气水合物(natural gas hydrates,简称为NGH)属于笼形化合物(clathrate)的一种,因此又被称为笼形水合物(clathrate hydrates)[1]。从化学意义角度也可解释为一种分子构架包裹另一种分子的形式。天然气水合物是由一种或几种小分子气体在一定的温度和压力下与水作用生成的一种非固定化学计量的笼形晶体化合物[2]。在自然界中,天然气水合物呈现为似冰状的固体[3],水分子通过氢键构成骨架,由于客气体被裹在骨架内部,因此客气体最基本的要求就是其分子体积要足够的小,以便容纳于骨架内部。尽管这样的小分子气体很多,例如早在1810年,英国化学家Humphry Dy在实验室中首先发现以氯气作为客气体的水合物[4],但现在从全世界的发展前景观察,主要研究以CO2/H2O 和CH4/H2O为主的水合物主客结构,前者涉及大气环境、绿色效应和工业界尾气的封存[5,6],后者涉及新能源探测和开发利用[7]。

天然气水合物有机碳储量大,约占全球有机碳的53.3%,是其他包括煤、石油和天然气三者总量的一倍以上。其中分布在陆地上的天然气水合物最大地质储量约为5.3×1011t,主要分布在高原冻土带和高纬度的常年冻土区;分布在海洋中的最大地质储量约为1.61×1014t,主要分布在被动大陆边缘和活动大陆边缘[8]。天然气水合物能量密度大,客气体中甲烷多,可占到90%以上。在标准状态下,1标准体积的饱和甲烷气水合物完全释放后,其甲烷体积可达到164倍标准体积,因而单位体积的天然气水合物燃烧所放出的热量远远大于煤、石油和天然气,为煤的10倍,是传统天然气的2~5倍[1]。

天然气水合物的赋存条件主要受温度、压力和气源等控制,当然也包括其他因素的限定。目前研究表明,天然气水合物是在低温(0~10℃)、高压(>10 MPa)下形成的,在陆地和海洋中稳定带分布条件并不十分苛刻[9]。资料统计表明,冻土地区天然气水合物可在100m左右深度的浅层存在,最大可达1800~2000m,最常见的是700~1000m;在海洋中存在水深为300~5500m,在距离海底1000m深处都可能稳定存在[2]。

2 研究进展

英国科学家Dy在1810年首次发现了天然气水合物,当时他所发现的是氯气作为客气体的水合物[4]。第二年,Dy经过仔细地研究这种物质后,发表了正式的学术论文,稍后他又在英国学会展示了他的发现,这是天然气水合物走进人类历史的第一个印迹。

但在此之后的100年里天然气水合物研究发展速度不快,进展相对缓慢,人们仅通过实验室来认识水合物。1832年,Faraday在实验室合成了氯气水合物Cl2·10H2O,并对水合物的性质做了较系统的描述。其后人们陆续在实验室合成了Br2,SO2,CO2以及H2S等的气水合物。1884年,Roozeboom提出了天然气水合物形成的相理论[10]。此后不久,Villard在实验室合成了CH4,C2H6,C2H4以及C2H2等的气水合物[11]。1919 年,Scheffer和Meijer建立了一种新的动力学理论方法来直接分析天然气水合物,他们应用Clausius-Clapeyron方程建立三相平衡曲线,来推测水合物的组成。由此可见这段时期的研究主要集中在纯科学的研究范围内。

天然气水合物从发现到20世纪30年代并没有引起工业界重视,直到人们发现它是远东地区冬天里堵塞煤气管道的物质[12],这时对它的物理化学性质才开始比较深入的研究,出于工业生产目的,其间对水合物的抑制剂研究较为繁盛[13]。60年代,原苏联科学家预言了自然界中存在天然气水合物[14],后来在远东的梅索亚哈气田勘测证实有天然气水合物存在,极大地促进了人们对未来能源的期盼。据科学家保守估计,现在全世界以天然气水合物形式包裹的碳总量是其他常规能源碳总量的两倍之巨[2]。另一方面,由于温室效应气体二氧化碳大量地排放到空气中,使近些年来全球气候异常,厄尔尼诺现象和全球平均温度的上升已经开始导致生物生存的环境发生不可逆的恶化,因此有效地减少二氧化碳这种温室气体排放到空气中、减少温室效应,在科学界和工业界也逐渐形成广泛共识[15]。目前,日本、美国等几个国家前瞻性地研究天然气水合物将其作为对二氧化碳的有效封闭物质,把二氧化碳禁锢在主气体的框架内沉到深海排泄地,从而达到封存温室气体的效果[16]。

科学界认识到天然气水合物的研究已经成为一门综合各种学科的系统工程,除了涉及常规的物理和化学知识外,微生物学、计算机模拟、工程学和经济生态学等学科也渗透其中。物理、化学理论进展已经有几十年的积淀,成果斐然,而后来新兴的边缘科学从更广的角度给科学界带了对天然气水合物重新认识的机遇[1]。微生物(尤其是厌氧环境中的微生物)与水合物关系最为密切,其栖息环境与水合物的赋存环境相互依存。有迹象表明,在海底表面暴露的水合物与此相关[17]。计算机模拟的应用除了宏观地预测天然气水合物的赋存空间之外,还可在微观上模拟水合物分子的形成过程,便于理解和寻找水合物的有利靶区。工程学带动了水合物研究的实验室技术,现在已经开发了很多高度精密且灵活方便的仪器用来记录和刻画天然气水合物形成的实验过程,正是这些先进的实验装置极大地促进了水合物的研究进展。经济生态学既是自然科学,同时也是人文科学,由于天然气水合物是巨大的能源仓储,如果未来某一天可具有经济意义的开,必将会改变现今世界的能量消耗模式,世界经济格局也必然随之改变,由能源再分配所引发的未来世界变化也应引起足够重视,这不仅关系到个人和国家的发展,同时也是企业未来发展的良好预判[18]。

3 各国动态

目前,美国、日本、印度等能源进口大国纷纷涉足天然气水合物的研究,上述3个国家最为积极,对天然气水合物的研究都受到了国家财政部的全力支持。

日本从1992年起开始关注天然气水合物,1995年由通商产业省能源厅石油公团联合10家石油天然气私营企业,设立了“甲烷天然气水合物研究及开发推进初步”,为期5年,投入的研究经费高达9000万美元。经由对日本周边海域,特别是对鄂霍次克海的调查,初估天然气水合物量可供日本100年的能源消耗。

1995年冬,以美国为首的ODP164航次海洋探测,在大西洋西部布莱克海台针对天然气水合物进行了专门的调查,首次肯定其具有商业开发价值。同时指出,天然气水合物矿层之下的游离气(气态天然气)也具有经济价值。据初步估计,该地区天然气水合物量多达100×108t,可满足美国105年的天然气消耗。美国参议院于1998年通过决议,把天然气水合物作为国家发展的战略能源,并列入国家级长程,要求每年投入2000万美元进行探勘,并于2015年进行商业性试。

印度为了解决天然气供应问题也开展了大量的水合物研究,已获取了印度大陆边缘的地震数据。此外,在印度东海岸Krishna-Godari盆地的常规油气田开中也发现了水合物。

近年来,我国传统化石燃料已不能满足我国经济发展、环境保护的需要,仅2002年我国进口原油和成品油就近1×108t,预计2010 年石油缺口为1.2×108t。随着我国经济的快速发展,我国今后对能源的需求将急剧增加,我国能源安全和后续能源供应直接关系到我国社会和经济的可持续发展,因此开展天然气水合物研究具有重大战略意义。针对我国近年来能源供需矛盾日益突出、对国外石油和天然气的依赖程度不断加大的状况,面对国家开发新型洁净能源的现实需求,为提升我国天然气水合物的研究开发水平,促进我国经济和社会的可持续发展,中国科学院积极部署天然气水合物研究工作,组织了跨所、跨学科的优势研究力量,依托广州能源所,组织地质与地球物理所、广州能源所、广州地化所和南海海洋所等单位于2004年3月正式在广州成立了“中国科学院天然气水合物研究中心”。与此同时,一些国内大型企业也逐步开始认识到天然气水合物的未来能源意义,如中石化和中石油等已经着手启动了勘探研究等项目。发展、开发一套关键的高新技术,为开展海洋天然气水合物综合勘测研究提供高技术支撑,是形势的需要,是国家发展战略的需要。同时,高新研究勘测关键技术的开发,也可带动相关学科的发展,赶上国际发展步伐,维护国家权益,保持经济发展增长不衰。

中国天然气水合物研究虽起步较晚,但近几年效果显著,先后在我国南海和东海盆地发现了数量可观的天然气水合物矿带,通过分析地球物理探矿资料和追踪天然气水合物存在标志,证实仅在南海北部西沙海槽区估算的天然气水合物总量达到(469~563)×109桶的石油当量,大约相当于我国陆上和近海石油天然气总量的二分之一。在青藏高原的羌塘盆地,天然气水合物研究也处于调研阶段,研究项目稳步推进。令人更为欣喜的是最近在我国南海东沙海槽提取到天然气水合物实物,这无疑会大大加速我国天然气水合物的研发力度和规模。

致谢 研究工作得到所领导赵克斌教授和其他同事的帮助,表示衷心的感谢。

参考文献

[1]Sloan ED.Clathrate hydrates of natural gases[M].2nd ed.New York,Marcel Dekker.1998.

[2]Makogon IF,Makogon YF.Hydrates of hydrocarbons[M].Tulsa,Oklahoma,Penn Well Publishing Company.19.

[3]Peters D,Mehta A,Walsh J.A comprehensive model based upon facts,conjecture,and field experience[C].In.Proceedings of the 4th international conference on gas hydrates.2002.

[4]Dy H.On a combination of oxymuriatic gas and oxygene gas London[C].Royal Society of London Philosophical Transactions,1810:1811.

[5]Lelieveld J,Crutzen PJ,Dentener FJ.Changing concentration,lifetimes and climate of forcing of atmospheric methane[J].Tellus B 1998,50:128~150.

[6]Houghton JT,et al.The scientific basis.Cambridge[M],Cambridge Univ.Press.2001.

[7]Kleinberg R,Brewer P.Probing gas hydrate deposits - Exploiting this immense unconventional energy resource presents great challenges[J].Am Sci 2001,89:244~51.

[8]蒋国盛,王达,汤凤林等.天然气水合物的勘探和开发[M].武汉:中国地质大学出版社.2002.

[9]Kvenvolden KA.Gas hydrates—Geological perspective and global change[J].Rev Geophys 1993,31:173~87.

[10]Dyadin YA,Aladko LS.Composition of clathrate hydrates of bromine[J].Journal of Structural Chemistry.16,18(1):7~41.

[11]Mao WL,et al.Hydrogen clusters in clathrate hydrate[J].Sci.2002,2(5590):2247~2249.

[12]Lippmann D,Kessel D,Rahimian I.Gas hydrate equilibria and kinetics of gas/oil/water mixtures[J].Annal of the New York academy of sciences.1994,715(1):525~527.

[13]Nydal OJ,Banerjee S.Dynamic slug tracking simulations for gas-liquid flow in pipelines[J].Chemical Engineering Communications,1994,141(1):13~39.

[14]Yakushev VS,Chuvilin EM.Natural gas and gas hydrate accumulations within permafrost in Russia[J].Cold Regions Science and Technology,2000,31(3):189~.

[15]Suess E,et al.Gas hydrate destabilization,enhanced dewatering,benthic material turnover and large methane plumes at the Cascadia convergent margin[J].Earth and Planetary Science Letters.1999,170(1~2):1~15.

[16]Handa N.Discussion on the direct ocean disposal of CO2.In:Handa N,Ohsumi T,editors.Direct ocean disposal of carbon dioxide[C].Tokyo,Terra Scientific Publishing Company.1995.45~61.

[17]Zhang GC,et al.Investigation of microbial influences on seafloor gas-hydrate formations[J].Marine Chemistry.2007,103(3~4),359~69.

[18]Max MD,Johnson AH,Dillon WP.Economic geology of natural gas hydrate[M].Dordrecht,Netherlands,Springer.2006.

LNG 对环境的利好影响日益显著,LNG 行业进入快速发展时期

液化天然气 (Liquefied Natural Gas,简称 LNG) 在能源转型过程中被广泛认可为相对较清洁的能源选择。

相对于传统的煤炭和石油燃料,LNG 的燃烧过程产生的二氧化碳 (CO2) 排放较低。LNG 的燃烧释放的二氧化碳排放较少,因此对应对气候变化和减少温室气体排放方面起到了积极的作用。

目前,国内 LNG 行业发展前景广阔且已进入快速发展时期,越来越多的国内外资本准备进入 LNG 行业,LNG 行业面临着更大的发展机遇和更为激烈的竞争。龙头企业为巩固并扩大公司市场份额,进一步完善 LNG 完整、配套的全产业链布局,扩大民用、车用、工业等应用领域终端市场规模,并通过新建、收购兼并等多种方式扩大经营规模和扩展经营区域。

LNG(液化天然气) 数字化节能诊断与调控方法及系统,属于 LNG 接收站的生产运行、节能优化、调控技术领域。为了让用户更便捷地管理液化天然气 (LNG) 接收站,数字孪生轻量化 LNG 接收站三维可视化监控平台。形象还原出 LNG 站全貌、实时转运、储存和再气化过程,协助运维人员进行高效数据分析、智能决策和远程操作,助力 LNG 接收站得以精益化管理。

海上 LNG 终端为船只提供了一个转运、装卸、储存和再气化液化天然气的场所。来自世界各地的任何类型的液化天然气船都可以停靠在此。温度为 -160℃ 的液态天然气通过巨大的装载臂从船上泵出,进入大型储存罐。

应用数字孪生技术对这个过程进行线上监控,直观地了解 LNG 接收站实时转运、储存和再气化过程。协助运维人员高效分析数据、智能决策、运维遥控等操作。

通过搭载感知元件,对 LNG 接收站周围环境的温度、湿度、风力等环境参数,进行实时集、传输、呈现。在可视化监控界面内,定位罐体突出显示,实现用户对储存罐供给状态实时数据监控,确保其正常运行并满足家庭能源需求。

同时还能远程监测储罐防护锅、监视器、自动泄压器等设备状态,作业人员随时随地了解储罐状态,掌握预警信息,保障储罐安全。

装卸可视化监控

天然气从储罐中以两种方式运出码头:一种是通过卡车或较小船只以液化天然气形式运出,另一种则是经过再气化过程,将天然气转化为气态运出。

通过 3D 平台进行流程可视化监控,用户对其作业状态、装载状态、运输工艺实时监控。让液化天然气的安全运输和再气化过程得以高效进行,更好地管理输送进程,提高天然气周转效率。

三维场景不仅能展示出生产环节信息,还支持展示安防信息,从而有效防止各类型安全的发生(如毒气泄漏),进一步提高 LNG 接收站的安全性。可视化平台还会通过接口接入设备运行数据,运维人员无须抵达现场,亦可了解设备运行状态、运行信息等。

车辆运输

3D 可视化系统结合地域时空特征及气体条件等,对公路槽车或罐式集装箱车的车辆运输状态和场站情况信息进行高度融合集中,建立可视化后果动态预测分析一张图。实时监测罐区、车辆等主体的行进工况,当车辆位置发生异常、系统实时异常报警并弹窗提示。

货轮运输与 HT 可视化系统相结合,融合船舶容量、船舶调配、进出港船舶量数据展开数据联动分析,实时展示船舶实况信息。

同样提供丰富的 2D 面板以显示靠泊时间、实际开工时间、完工时间、离泊时间、作业总量、剩余作业、剩余装船、剩余卸船等多样化作业进度。

LNG 作为一种清洁能源,在可再生能源领域具有巨大的潜力。随着减碳的趋势的不断高涨,LNG 作为全球交易的能源,它的使用将成为各国积极推动的清洁能源之一。运用实现的可视化 LNG 终端实时监控和优化运行平台,助力场站安全、高效、环保地稳步运行。

随着全球环保问题日益突出,替代传统化石能源,推广清洁能源已被社会广泛重视。天然气液化技术的成熟和价格的逐渐降低,使得 LNG 天然气液化厂成为了清洁能源行业的一大热点。

未来,LNG 天然气液化厂将继续发挥着重要的作用,成为替代煤炭、原油等传统能源的新动力源。同时,该行业在减排、节约能源等方面的优势也将得到更广泛的应用和推广。