1.西南石油大学的学术研究

2.3D数字化技术这一领域中博维数孪发展的怎么样?

3.能耗预测技术

4.演绎法预测

5.数字孪生介绍系列(一)什么是数字孪生,它和仿真有什么区别?

天然气动态仿真真实数据是什么_天然气动态仿真真实数据

油气转换开关的接法,黑线打铁,红线接12V电源,棕线绕在分缸线上,白线是压力表的信号线,黄线不接,兰线接电磁阀正极·点火提前角的接法,红线接12V电源,黑线打铁,黄线接节气门的信号线,兰线接电磁阀正极,仿真器的接法,灰线接氧传感的电脑方向紫线接氧传感方向,黑线打铁,兰线接电磁阀,还有两根接油邦线,我知道的就这些,

西南石油大学的学术研究

1、学术研究课题

(1)天然气开发规优化配产方法研究,四川省学术带头人培养基金,2005,负责人;

(2)天然气生产动态仿真开激及发规划决策系统,国家重点实验室开发基金(PLN0420)2006,负责人;

(3)国家重点实验室开发基金(TLNo122):函数逼近论和微分动力系统及其在石油中的应用 2002 油气藏地质及开发工程国家重点实验室验收 主研。

2、学术论文

近五年在“石油学报”、“天然气工业”“运筹于管理”、“石油勘探与开发”、“统计与决策”、等杂志发表论文30多篇,其中EI收录11篇,代表性论文如下:

(1)刘志斌,丁辉,高珉,杨延辉. 油田开发规划产量构成优化模型及其应用[J]. 石油学报, 2004,25(1):62-65(Ei收录,检索号04108053440)

(2)刘志斌,卢立泽,赵金洲,丁显峰. 气井动态仿真与优化配产模型研究及应用[J]. 天然气工业, 2005,25 (3):124-126(Ei收录,检索05179055956)

(3)刘志斌,张锦良. 油田开发规划多目标产量分配优化模型及其应用[J]. 运筹与管理, 2004,13(1),118-121

(4)刘志斌,邓勇,凡哲元. 混合遗传算法在气田产量构成优化模型中的应用[J]. 西南石油学院学报,2006,(3):1-4(Ei收录,检索号063410083878)

(5)马永驰,刘志斌. 基于新鲜度函数的油气产量组合预测方法[J]. 石油学报,2005,26(1):87-91(Ei收录,检索号05119000363)

(6)殷建成,刘志斌. 天然气需求自适应优化组合预测模型研究[J]. 天然气工业,2004,24(11):

167-169(Ei收录,检索号04518733622)

(7)刘志斌,李珍,周俊杰. 随机油价下油田产量构成的优化模型[J]. 统计与决策,2007,231(2)

专著:李允、刘志斌,现代优化技术在油田开发中的应用,石油工业出版社,2001;

国家发明专利:

赵明、刘志斌等,油田开动态与开发规划定量多功能模拟预测技术,专利号:200610170627(待授权)

3、学术研究表彰/奖励

(1)油田开发规划决策系统 2003年 四川省科技进步三等奖 负责人;

(2)华北油田开发规划决策系统 2002华北油田验收,西南石油学院科技进步一等奖, 负责人。

3D数字化技术这一领域中博维数孪发展的怎么样?

截至2016年3月底,学校设有1个新能源和非常规油气研究院,各级科研基地平台共计91个,包括国家重点实验室1个、联合国援建技术中心1个、国家工程实验室、工程中心(协作)3个、产业技术创新战略联盟2个、国家级大学科技园1个、国家级技术转移示范机构1个,国际合作实验室2个,省部级重点实验室(工程技术研究中心)27个、省级实验科研基地3个,厅局级及横向合作科研基地46个,校级研究中心(所)5个。

2014年,学校成立世界上首个“海洋非成岩天然气水合物固态流化开实验室”。2015年西油与川大联合共建测井实验室。 西南石油大学作为实体建设的科研基地(平台)情况表序号名称级别依托单位1 油气藏地质及开发工程国家重点实验室(西南石油大学、成都理工大学) 国家级 石工院 2 低渗透油气田勘探开发国家工程实验室(协作) 国家级 石工院 3 油气钻井技术国家工程实验室(协作,含3个研究室) 国家级 石工院、机电院 4 国家能源高含硫气藏开研发中心(硫沉积评价技术研究所) 国家级 石工院 5 煤层气产业技术创新战略联盟 国家级 石工院 6 二氧化碳捕集、利用与封存(CCUS)产业技术创新战略联盟 国家级 石工院 7 国家级大学科技园(西南石油大学) 国家级 学校 8 国家技术转移示范机构(西南石油大学) 国家级 学校 9 中美联合数据工程与数据分析实验室 国际合作 计科院 10 油井完井技术中心(联合国援建) 国际合作 石工院 11 石油天然气装备教育部重点实验室(西南石油大学) 教育部(省部共建) 机电院 12 天然气开发教育部工程研究中心(西南石油大学) 教育部(部级) 石工院 13 油田化学教育部工程研究中心(西南石油大学) 教育部(部级) 化工院 14 沉积盆地与油气重点实验室(沉积地质研究中心) 国土部(部级) 地科院 15 天然气地质四川省重点实验室 省科技厅(省级) 地科院 16 油气田应用化学四川省重点实验室 省科技厅(省级) 化工院 17 能量转换与储存先进材料国际科技合作基地 省科技厅(省级) 材料院 18 油气消防四川省重点实验室 省科技厅(省级) 石工院 19 四川省天然气开发与开研究实验基地 省科技厅(省级) 石工院 20 四川石油天然气发展研究中心 省教育厅、社科联(省级) 学校 21 能源安全与文化普及基地 四川省社科联 马院 22 四川省不锈钢工程技术研究中心 省科技厅(省级) 材料院 23 四川省页岩气勘探开发协同创新中心 省教育厅(省级) 石工院 24 四川省石油天然气装备技术协同创新中心 省教育厅(省级) 机电院 25 四川省海洋天然气水合物开发协同创新中心 省教育厅(省级) 石工院 26 四川省页岩气与环境协同创新中心 省教育厅(省级) 地科院 27 中国石油石油管重点实验室-石油管力学和环境行为重点研究室 集团公司级 石工院 28 中国石油钻井工程重点实验室-钻井液重点研究室 集团公司级 石工院 29 中国石油钻井工程重点实验室-欠平衡钻井研究室 集团公司级 石工院 30 中国石油天然气成藏与开发重点实验室-特殊气藏开发研究室 集团公司级 石工院 31 中国海洋石油(海上油田)提高收率重点实验室 集团公司级 石工院 32 中国石油高含硫气藏开先导试验基地—西南石油大学研究室 集团公司级 石工院 33 中国石油油气藏改造重点实验室-西南石油大学压裂酸化数值模拟研究室 集团公司级 石工院 34 中国石油油气储运重点实验室-西南石油大学复杂天然气集输研究室 集团公司级 石工院 35 中国石油HSE重点实验室—西南石油大学研究室 集团公司级 化工院 36 中国石油碳酸盐岩重点实验室沉积—成藏研究室 集团公司级 地科院 37 中国石油钻井工程重点实验室钻头研究室 集团公司级 机电院 38 中国石油物探重点实验室页岩气地球物理研究室 集团公司级 地科院 39 中国石油测井重点实验室工程测井研究室 集团公司级 地科院 40 海洋非成岩天然气水合物固态流化开实验室 集团公司级 石工院/机电院 41 四川省高校岩石破碎学与钻头研究实验室 省教育厅(厅级) 机电院 42 四川省高校天然气开重点实验室 省教育厅(厅级) 石工院 43 四川省高校测控技术与自动化研究室 省教育厅(厅级) 电信院 44 四川省高校石油工程测井实验室 省教育厅(厅级) 石工院 45 四川省高校石油工程计算机模拟技术重点实验室 省教育厅(厅级) 计科院 46 四川省高校石油与天然气加工重点实验室(自筹) 省教育厅(厅级) 化工院 47 四川省高校油气田材料重点实验室 省教育厅(厅级) 材料院 48 四川省高校结构工程重点实验室 省教育厅(厅级) 土建院 49 四川省环境保护油气田污染防治与环境安全重点实验室 省环保厅(厅级) 化工院 研究领域 序号研究领域特色及主要研究方向一 石油与天然气工程 1.低渗透油气藏开发理论与方法 2.复杂油气藏压裂酸化理论与应用技术 3.裂缝性油气藏开发理论与方法 4.有水气藏开发理论与方法 5.高含水期油藏开发理论与方法 6.油气藏流体相态研究与特殊气藏开发理论及配套技术 7.注气提高收率理论及配套技术 8.恶劣条件油藏聚合物驱提高收率技术 9.油工艺技术 10.复杂非常规油气藏数值模拟理论和方法研究 11.非常规天然气储层成因与描述技术 12.储层损害与储层保护 13.欠平衡钻井技术研究 14.油气井固井理论与实验研究 15.管柱力学 16.工程岩石力学 17.完井方法 18.钻井液处理剂作用机理及钻井液化学 19.深井复杂井与特殊工艺井钻井技术 20.水射流研究与应用 21.石油工程测井及应用 22.钻井信息、仿真与最优化 23.油气管道仿真及优化技术 24.油气管道完整性评价技术 25.天然气管道储气及调峰技术 二 地质与地质工程 1.碳酸盐岩沉积储层地质学 2.油气层保护矿物岩石学 3.油气藏地球化学及成藏理论 4.储层描述与储层分布预测 5.剩余油分布研究 6.碳酸盐岩储层研究 7.新型电法非地震勘探系列技术研究 8.非线号处理及其在地球物理资料处理中的应用 9.层序地层学理论及其在油气勘探开发中的应用 10.碳酸盐岩测井评价技术 11.低孔低渗油藏评价技术 12.油藏整体描述技术 13.油气层保护的地质评价与研究 14.古应力场数值模拟与分析 15.裂缝预测 16.深部油层油后期地质效应 17.石油微生物研究 18.微生物造岩成丘研究 三 机械工程 1.机械现代设计理论及方法研究 2.现代制造技术及方法研究 3.岩石破碎与钻头研究 4.钻工具及设备研制 5.特殊油工艺方法及设备研究 6.石油装备与工具基础理论研究与产品开发 7.石油机械系统计算机仿真研究 8.软件开发 四 化学工程与技术 1.油气井建井化学浆添加剂研发 2.油化学 3.驱油剂研发及驱油体系研究 4.低渗透油藏开化学助剂研发 5.稠油开 6.石油天然气化学防腐 7.油气田环境污染控制及治理 8.石油天然气安全技术研究与评价 9.石油加工 10.天然气处理与加工 11.生物质能源研发 12.理论与计算化学 五 计算机科学与技术 1.石油信息化 2.计算机模拟与仿真 3.嵌入式系统 4.软件工程 5.数据库系统 六 建筑科学与工程 1.工程结构与系统现代设计理论 2.复杂结构与系统数值分析计算方法 3.结构系统安全性、耐久性、检测与维修加固 4.工程项目与企业的质量工程与卓越绩效评价 5.基于空间信息技术的结构健康检测理论与方法 6.岩土工程勘察与爆破技术 7.油气管道完整性评价与管理技术 8.储气系统、输配气管网规划设计与系统仿真 七 材料科学与工程 1.材料腐蚀机理与防护技术研究 2.油气田用高分子材料研究 3.油气田用无机非金属材料研究 4.材料表面工程研究 5.超细材料与应用研究 八 应用数学 1.应用微分方程与数值计算 2.应用概率统计 3.最优化与决策 4.石油工程仿真模拟计算 5.石油工程信息分析与处理 6.石油工程数值计算 九 仪器科学与技术 1.油气测试计量及标准化技术 2.油气检测与自动化装置 3.传感器及无损检测技术 4.油气智能测控系统 5.智能化仪器及计算机测控技术 6.智能结构系统与仪器 十 石油工程管理

管理科学与工程

工商管理

应用经济学 1.油藏经营管理 2.石油人力管理 3.石油与天然气工程项目管理 4. 石油与天然气工程技术经济及管理 5. 石油与天然气工程系统管理和优化 6. 管理科学理论、方法及应用 7. 工业工程与管理工程 8. 信息管理与企业信息化 9. 物流与供应链管理 10. 现代企业管理理论、方法及应用 11. 现代营销理论与营销实践 12. 人力管理 13. 石油技术经济及管理 14.会计与财务管理 15.石油天然气经济研究 16.石油产业组织创新研究 17.企业理论研究 18.农林经济研究 十 一 马克思主义理论

社会学 1.马克思主义与当代中国现实研究 2.马克思主义中国化理论研究 3.马克思主义基本原理运用研究 4.马克思主义基本理论 5.思想政治教育与管理 6.思想政治教育原理与方法 7.公共组织与人力管理 8.行政管理理论与实践 9.社会工作与管理 10.应用社会学 十二 法学 1.民商法学 2.刑事法学 3.经济法学 4.环境保护法学 5.国际法学 6.法理、行政法学 十三 外国语学及应用语言研究 1.外语教育理论与实践 2.翻译理论与实践 3.跨文化交际 4.英语教育 5.语言学 十四 体育学 1.体育教育训练学 2.体育人文社会科学 3.体育管理 科研成果 截至2016年3月底,学校先后承担国家杰出青年科学基金、优秀青年科学基金、自然科学基金,国家“3”、“863”、科技攻关(支撑)、科技重大专项,国家社科基金,教育部重点项目、新世纪优秀人才、教育部博士点基金,四川省杰出青年学术技术带头人基金等省部级以上项目2069项;获得包括国家科技进步特等奖、国家科技进步一等奖、国家科技进步发明二等奖在内的省部级以上奖励390多项。2015年学校实到科研经费3.56亿元。 “十一五”以来,发表论文13593篇,专著339部。

“十一五”期间,学校共申请专利2120项,其中发明专利1305项,实用新型专利815项,学校共授权专利1140项,其中发明专利569项,实用新型专利571项。 国家科技进步奖(十二五期间)  序号成果名称等级时间1 5000万吨级特低渗透-致密油气田勘探开发与重大理论技术创新 一 2015 2 海上稠油聚合物驱提高收率关键技术及应用 二 2015 3 超深水半潜式钻井平台“海洋石油981”研发与应用 特等 2014 4 大型复杂储层高精度测井处理解释系统CIFLog及其工业化应用 二 2014 5 鄂尔多斯盆地中部延长组下组合找油突破的勘探理论与关键技术 二 2013 6 特大型超深高含硫气田安全高效开发技术及工业化应用 特等 2012 7 超高温钻井流体技术及工业化应用 二 2012 国家技术发明奖  序号成果名称等级时间1 碳酸盐岩油气藏转向酸压技术与工业化应用 二 2013 ESI国际高被引学术论文序号单位姓名论文名称期刊名称级别出版年份1 理学院 田俊康 Improveddelaypartitioningmethodtostability

analysisforneuralnetworkswithdiscreteand

distributedtime-varyingdelays. AppliedMathematicsandComputation

233(2014)152–164 ESI 2014年 科研经费 西南石油大学科研经费情况(单位:亿元人民币)年份金额2008年全年实到科研经费两亿多元2009年3.07亿元2010年3.7亿元2011年4.2亿元2012年4.67亿元2013年4.6亿元2014年4.3亿(以上资料来源: ) 学术期刊 《西南石油大学学报(自然科学版)》

《西南石油大学学报(自然科学版)》前身为《西南石油学院学报》,创刊于1960年,是经国家教育部、科技部和新闻出版总署批准、由西南石油大学主办、以报道石油科技为主的学术性期刊。为中文核心期刊,2004年获教育部优秀科技期刊一等奖,2008年获“中国高校优秀期刊”称号。已被中国国外著名数据库Elsevier、美国石油文摘(PA)、美国化学文摘(CA)、剑桥科学文摘(CSA)、俄罗斯文摘杂志(AJ)、日本科学技术社数据库,以及中国国内大型数据库CPA、《中国学术期刊(光盘版)》、《中国科技论文统计与分析》、《中国科学引文数据库》、《中国石油文摘》等收录。主要刊登石油专业领域中具有创造性或创新性的学术与技术论文、基础理论研究论文、前沿问题的讨论与争鸣,突出反映石油天然气工业中的新理论、新方法、新工艺、新技术。

《西南石油大学学报》(社会科学版)

《西南石油大学学报》(社会科学版)是西南石油大学主办的综合性学术理论刊物、《CNKI 中国知网》收录期刊、《中国核心期刊(遴选)数据库》收录期刊、《中文科技期刊数据库(全文版)》收录期刊、《中国期刊网》全文入网期刊、《万方数据-数字化期刊群》全文入网期刊、《中国学术期刊综合评价数据库》来源期刊。主要刊登能源发展研究、政治学与社会学、法学、文史哲等学科领域的研究及应用中有独到见解或创新性的学术论文。 馆藏 据2016年3月学校图书馆信息显示,该校图书馆由成都校区图书馆和南充校区图书馆两部分组成。南充校区图书馆由应用技术学院管理。

馆藏以石油天然气文献为特色,理、工、管、经、文、法、教等不同学科协调发展。纸本图书183万册,电子图书125万册,电子期刊3万种,订购印刷型期刊1834种,购买数据库40个。

图书馆与国家科技文献中心(NSTL)、高校人文社科文献中心(CASHL)、国家图书馆、中国科学院国家科学图书馆、教育部CALIS中心、科技部西南信息中心、中国石油信息所、四川大学图书馆、成都理工大学图书馆等文献机构进行馆际互借、文献代复制和代传递服务。与西南交通大学图书馆和中国石油大学图书馆的教育部科技查新站合作,在该馆建立科技查新代办站,直接为该校科研工作者提供查新服务。

图书馆结合该校的教学科研实际,自行研发多种服务类型的数据库系统平台:该校硕博士论文检索与提交系统、文献传递与咨询平台、远程访问系统、决策参考信息专题网站、图书馆事实数据库、图书馆读者问卷调查系统、教师教学参考园地等。

19 年,图书馆建成了以小型机SUN3000为主服务器的自动化集成管理系统,使图书馆的管理、访、编目、流通、期刊、OPAC等有关业务都实现了自动化。1999 年,建成以 JVC 光盘库 +AXIS 光盘塔为数据中心的图书馆光盘网络服务器系统。2008年,建成以Sun4900、Sun6130、浪潮AS1000为核心设备的存储网络系统,以及本地镜像数字图书馆服务系统,共计服务器系统10套,磁盘阵列容量达到40TB。图书馆工作人员开展各种学术研究与信息报道。已在正式出版的各级学术刊物及学术会议上发表研究论文200 多篇,其中 4 篇英文论文在国际学术会议上发表。参加和主持国家、省、部、局、校级科研项目20余项。正式出版论文集《新时期石油高校图书馆工作》等。

能耗预测技术

像航空航天、电力、船舶、城市管理、农业、建筑、制造、石油天然气、健康医疗、环境保护等众多行业领域都在大力发展数字孪生技术,数字孪生应用场景非常广阔。数字孪生虽然是个闭环的回路,但其发展的终极指向必然是一个开放的生态平台,只有这样才能满足不同的应用场景。

自概念提出以来,数字孪生技术在不断地快速演化,无论是对产品的设计、制造还是服务,都产生了巨大的推动作用。而数字孪生不论是在城市建设管理,还是工业化建设等不同行业的深度推广应用,都带来了无限可能性。一起来看看数字孪生技术有哪些创新应用案例吧。

数字孪生智慧风电

数字孪生 3D 可视化系统能实现风力发电机组、升压站、配电室的漫游巡检和远程监测。场景内设置了漫游动画、暂停动画、停止动画、初始视角四个按钮,针对不同的场景可进行第一人称视角漫游或者无人机视角漫游。Hightopo可视化场景将智能设备的实时运行参数接入两侧的 2D 面板,将项目概况、实时指标、机组状态、环境参数、发电统计、节能减排等复杂、抽象的数据以丰富的图表、图形和设计元素展现,实现集中管控。通过对历史数据的融合分析,管理者可实现的优化配置,构建智慧风电管理系统。在虚实空间中完成映射,实现对真实设备的三维可视化双向同步,解决大场景、不可逆项目的全周期建设。

数字孪生智慧设备拆解

设备级、产线级乃至全厂级的仿真建模,多模型的无缝集成、模型上线后的修正验证,以至到最末端的人机交互,这些对应用工厂的数字化基础、领导者对管理模式的改革魄力、企业的资金实力、技术供应商的系统工程思维都提出了较高的要求。现实与虚拟的环境因子互相链接、互相映射,并通过深度运算和前瞻模拟实现进程式发展,打造虚实结合的拟态运作,创造工业运行新生态。

数字孪生智慧园区

数字孪生技术 1:1 通过全域数字园区管理平台,可覆盖应用安全管理、场所管理、资产管理、能源管理场景,实现精准映射,地空传感布设,实现校园基础设施的全面数字化,实现人员、车辆动态信息在仿真空间实时留痕,模拟人、物在真实校园中发展轨迹,并预判发展方向,还能对潜在危险进行智能预警和合理建议。

数字孪生智慧矿山

从矿山自动化到数字矿山,再到如今的智慧矿山,数字经济化时代,有关未来矿山的建设与实现方式在不断地日新月异。智慧矿山,智能勘探,物联网等新型技术概念的出现正引领传统矿业加速向绿色、安全、智能、高效方向发展。

基于数字孪生的数据集成性、实时性、仿真性,可以将问题定位到具体位置,并给出最佳响应决策和提供远程控制能力。这让现场劳动效率大幅提升,岗位工作负荷也随之显著下降。一些数据指标给出了更坚实的经济效益证明——产线上的 4 个操作室缩减为 1 个集控中心,带来人力成本在内的管理运营成本下降 60% ,管理效率提高 25% ,故障响应时间缩短 15% ,能耗成本降低 10% 左右。

数字孪生产业链环节很长,包括数据集、模型建构、仿真分析、人机交互、行业应用等环节。目前呈现明显的碎片化,每个产业环节都有相应的公司在提供服务,每家的规模都相对有限,能够从顶层设计上提供全套的方案咨询能力,在生态上又能整合产业链上下游提供完整的技术落地交付能力的供应商,将会具备更强的竞争力。

演绎法预测

能耗预测技术最重要的就是正算法能耗预测技术的应用。正算法的技术路线是利用现有仿真技术及管道模型研发“正算法”能耗预测软件。经研究分析,“ 正算法”能耗预测软件开发,建议用基于SPS等仿真技术进行二次开发的技术路线。

预测模块应实现根据月度、年度输量给定的输量,自动生成开机输送方案,并预测不同方案的能耗,对油气管道能耗进行自动预测;要具备对燃料费、动力费用预测的功能。预测模块内部应包括“方案自动生成子模块”、“能耗指标折算子模块”、“逻辑判断子模块”等3个功能子模块。“方案自动生成子模块”、“能耗指标折算子模块”、“逻辑判断子模块”等3个功能子模块应通过通信协议与SPS仿真软件联动,实现自动预测能耗的逻辑过程。开发“方案自动生成子模块”,将压缩机机组、泵机组、加热炉的开机方案,作为此子模块的主要输出信息,按照一定的算法,自动生成若干开机方案。开发“能耗指标折算子模块”,将耗能量及能耗指标作为此子模块的主要输出信息。开发“逻辑判断子模块”,根据SPS仿真软件输出的管输介质输量、压力、温度,以及耗能设备功率、转速、负荷等数据,和“能耗指标折算子模块”输出的耗能量及能耗指标,按照既定逻辑判断是否需要继续试,并给出优先挑选哪一类方案进行试算的指向性输出信息。

正算法所实现的能耗预测软件是离线的,即不以实时的SCADA数据作为数据来源进行业务过程的修正。基于“正算法”的能耗预测软件,应以油气管道离线水力、热力仿真计算软件为基础进行开发。能耗预测模块,应实现对天然气管网、成品油管道、原油管道的能耗预测。

正算法预测是基于SPS仿真软件进行二次开发而建立的能耗预测模块。其主要特点:一是运行方案自动生成及初步优选;二是利用SPS对运行方案进行模拟,并将模拟结果转化为能耗数据、燃料费、动力费等。

正算法预测模块的功能结构如图11-3所示:

方案自动生成模块,根据用户输入的管道参数、约束条件,进行方案自动生成并初步优选,形成方案库,为后续进行模拟仿真提供输入基础。

根据管道设备情况,用列举法,即不考虑管道水力热力条件,将管道所有可能的泵组合、压缩机组合等进行列举,形成开机方案的全集。

图11-3 正算法预测模块结构图

在输量一定的情况下,可以通过计算公式计算出所有开机方案的泵(压缩机)、加热炉功率,得到各方案能够提供的总压头和总功率。

在输量一定的情况下,可以通过计算得到管道所需要消耗的总压头、总能耗的最低值,利用该值对方案全集内的方案进行对比判断,从而获得最接近能耗最低值的方案。

方案模拟仿真模块是通过其中的控制模块读取开机方案模块所生成方案集中的指定方案,包括关键设备的启停状态、流量控制值、温度控制值等,并将其写入SPS模型中对应的点,实现对SPS模拟仿真的控制。

逻辑判断分为两种:即可行性判断,判断方案是否有超压、无法翻越最高点等情况,确定方案可行性;指向性判断,判断方案能耗高低,将指向性结果输出到方案生成模块。

能耗折算模块是正算法预测模块中进行数值转换的重要模块,其将SPS输出结果折算为生产单耗、耗油量、耗气量、总能耗等能耗指标。

如图11-4所示,原油管道方案生成用如下流程:

1)管道情况描述。用站场、管道、泵、加热炉、油品5个数据类对这条管道进行表达描述。

2)输入管道输量、分输量、注入量以及管道最低进站温度等必要参数。

3)流量分配,根据输量、分输量及注入量对全线进行流量分配,确定各管段的流量。

4)管段温降计算。用苏霍夫公式计算管道全线的温度分布情况。

5)管段压降计算。用达西公式计算各管段在给定输量条件下所需要消耗的压头。

6)通过3、4、5步迭代确定出管道所需消耗的最低能量。

7)根据管道压头损失情况,确定各个泵站所需要开启泵的最低数量;根据管道设计承压能力,确定各个泵站能够开启泵的最大数量。

8)依据各站开泵的最大、最小数量,进行全线的开泵情况组合,形成方案集,并对各方案的能耗进行计算排序。

9)将方案集中的方案与最低能耗进行对析,初步确定最优方案。

10)将最优方案写入数据库,SPS控制模块取出数据库中的方案,通过事先对好的点,将开机方案对应的指令写入SPS模型中对应的设备,驱动SPS模型模拟方案所指工况。

11)逻辑判断模块读取SPS计算结果,如果需要调整,则返回方案生成模块进行调整(根据产生总压头与管道所需压头进行比较,确定是高还是低;然后将方案的节流量与剩余压头之和同主泵单泵产生压头进行比较,确定是否具备增加、减少泵的条件)。

图11-4 管道方案生成流程图

12)如果不需要,则输出方案到能耗折算模块。

13)能耗折算模块读取SPS模拟数据,计算出该方案设定时间范围内的总能耗和生产单耗,供使用人员参考。

14)对于任何一次完整的预测过程,系统都将自动将其存入数据库,以备后期查询;可按管道查询历史预测结果,其中包含用户输入的数据和计算的结果和开机方案。

下面再介绍一下天然气管道方案生成数学模型。

首先设定目标函数。

天然气管道系统方案生成模块数学模型以最小能耗为目标,其数学表达式为:

油气管道能效管理

式中:S为生产总能耗,kW;Nj为第j个压缩机站的功率,kW;Nc为管网系统中压缩机站总数。

基本约束条件分为进(分)气量约束和进(分)气压力约束。

进(分)气量约束:运营部门购买的天然气只能在一定气量范围内变化。另外,各用户根据自身需要对购气量也有一定要求。即:

油气管道能效管理

i=1,2,…,Nn。

式中:Qi为第i节点进(分)气量,m3/d;Qimin为第i节点允许的最小进(分)气量,m3/d;Qimax为第i节点允许的最大进(分)气量,m3/d。

进(分)气压力约束:天然气运营部门购买的天然气的压力应该限制在一定范围内,同时,用户根据自身需要对管网各分气节点的压力也有一定要求。因此,管道各进(分)气点的压力需满足下式:

油气管道能效管理

i=1,2,…,Nn。

式中:Pi为第i节点压力,Pa;Pimin为第i节点允许的最小压力,Pa;Pimax为第i节点允许的最大压力,Pa。

管道强度约束:设天然气管道系统中管道总数为Np,为了保障管道的安全运行,管道k中的天然气压力必须小于此管道的最大允许操作压力,即:

油气管道能效管理

k=1,2,…,Np。

式中:Pk为第k管道中天然气的压力,Pa;Pkmax为第k管道允许的最大压力,Pa。

下面介绍管道压力降方程。天然气在管道中流动时会产生压力损失,根据气体在管道中流动的连续性方程和动量方程,得出气体在管道内稳态流动应满足的方程为

油气管道能效管理

式中:M为通过管道的气体流量,kg/s;PQ为管道起点压力,Pa;Pz为管道终点压力,Pa;T为气体流动温度平均值,K;L为管道长度,m;D为管径,m;Δh为管道起始端与终端高程差,m;Z为气体压缩系数,按BWRS状态方程计算;A为气体摩阻系数。

管网节点流量平衡约束。在天然气管道任意一节点处,根据质量守恒定律可知流入和流出该节点的天然气质量应该为0。一般地,对于有N。个节点的天然气管网系统,节点的天然气流量平衡方程组可以写为如下形式:

油气管道能效管理

式中:Ci为与第i个节点相连元件集合;Mik为与第i个节点相连元件k流入(出)i节点流量的绝对值;Qi为i节点与外界交换的流量(流入为正,流出为负);aik为系数,当k元件中流量流入i节点时为+1,当k元件流量流出i节点时为-1。

压缩机功率约束。天然气管网系统中每个压缩机站中压缩机的个数和种类都不尽相同,因此,每个压缩机(站)的功率(由于压缩机的特性原因)被限制在了一定的范围内。

油气管道能效管理

j=1,2,…,Nc。

式中:Nj为第j个压缩机(站)的功率,W;Njmin为第j个压缩机(站)允许最小功率,W;Njmax为第j个压缩机(站)允许最大功率,W。

压缩机方程。当气体经过压缩机增压时,应满足方程(11-8)。往复压缩机和离心式压缩机的理论方程如下:

油气管道能效管理

式中:N为压缩机功率,W;ε为压缩机压比,P2/P1;k为压缩机绝热指数;P1为压缩机入口压力,Pa;P2为压缩机出口压力,Pa;V1为压缩机入口处的体积流量,m3/s;ηp为压缩机多变效率,当压缩机为往复式压缩机时,ηp=1。

研究需要优化的运行方案变量,确定出天然气管道系统方案生成数学模型的优化变量为:管道节点处的压力和压缩机(站)的功率。

油气管道能效管理

i=1,2,3,…,Nn;j=1,2,3,…,Nn。

式中:Qi为第i节点流量,m3/d;Pi为第i节点压力,Pa;Nj为第j压缩机(站)功率,W。

用动态规划法对上述模型进行求解,其框图如图11-5所示:

图11-5 方案生成流程

数字孪生介绍系列(一)什么是数字孪生,它和仿真有什么区别?

演绎法能耗预测主要用工艺仿真的方式进行,而工艺仿真的技术难点主要是敏感性分析和影响条件的简化。这里,需要强调的是工艺仿真系统的建模和调试不是简单的纠偏,而是要发现影响因素,剖析规律,研究其影响的权重。

一般输油泵机组耗电、加热炉耗油(气)和压缩机组耗能可用模拟法测算。测算工具包括模拟软件与相关公式,建立步骤如下[10]:

第一,数据收集。

管道基础数据:

——管径,壁厚,管道高程、里程(含站场、阀室位置),管道最高承压,摩阻系数;

——沿线土壤四季不同地温、传热半径、土壤导热系数;

——输油站泵机组参数,包括:泵类型、性能曲线、功率、效率、开机/停机时间、额定转速、额定排量、运行方式(串联、并联)等;

——压气站压缩机组参数,包括:压缩机类型(离心式、往复式)、性能曲线、功率、温升比率、效率、开机/停机时间、驱动方式(电驱、燃驱)、最低进口压力、额定转速、压缩机配置方式(几用几备)、运行方式(串联、并联)等;

——加热炉参数,包括加热炉额定负荷、效率等;

——输送介质物性,原油密度、比热容、凝点、黏温曲线,天然气组分及其组成百分比,成品油密度、比热容等。

管线运行数据依据所制订方案而定,参数选取应符合调度手册和交接协议的相关规定。

第二,数据录入。

按照相关测算软件或公式的要求,对收集的数据进行整理、筛选、分析后翔实录入,以保证测算结果的可靠性。

第三,精度调整。

测算软件或公式初步形成后,应利用多组历史运行数据进行反复校核调整,以达到准确测算的要求。

按月度输量编制运行方案,并选择相应月份下的沿线地温,在模型中各站进出站主要参数符合调度操作手册要求的前提下,算出一组稳定的工况,得到不同月份内全线各站的耗油/气/电总量;当只有年输量的情况下,根据前三年的月不均匀系数编制分月运行方案,并选择相应月份下的沿线地温,在模型中各站进出站主要参数符合调度操作手册要求的前提下,算出一组稳定的工况,得到不同月份内全线各站的耗油/气/电总量。根据测算出的月度数值进行累加,形成全年耗油/气/电总量。

下面以原油管道能耗预测为例,阐述演绎法能耗预测相关要点。

1.原油管道最优能耗预测基本思路

(1)预测对象

直接预测对象:最优月耗电量;最优月耗油(气)量。

间接预测对象:管道月综合能耗(tce或MJ);管道月平均单位周转量耗电量、耗油(气)量;管道月平均单位周转量综合能耗(kgce/104t·km或kJ/104t·km);年耗电量、年耗油(气)量,按直接预测的1~12月的月耗电量、月耗油(气)量累加计算;年综合能耗量,按年耗电量、年耗油(气)量折算;该原油管道年平均单位周转量耗电量、耗油(气)量,按年耗电量、年耗(油)气量除以相应的年度总输油周转量得到;年平均单位周转量综合能耗(kgce/104t·km或kJ/104t·km),按年平均单位周转量耗电量、耗油(气)量折算。

(2)预测范围

时段选择:一般情况下预测目标时段的最终目标为指定月份,如需要,预测过程中要将一个月分解为若干不同稳态工况下的时间段。

能效指标选择:单条原油管道,直接生产能耗和单位周转量生产能耗。

这里需要说明的是,生产能耗、生活能耗、输送损耗可以按相关规范(定)定额计算,并不参与正算法能耗预测计算,只是在最终合计数据时并入能源消耗量和单位周转量综合能耗。

(3)预测的前提条件

基本输入:原油品种、原油输入点进油量、原油输出点交油量。

基础资料:K值、摩阻修正系数、泵效、炉效,设备特性曲线等。

(4)预测算法

工艺计算法(正算法)最优化算法,即在现有条件下,基于对预测月份进行流量分配方案和工艺运行方案优化,得到相对最低(优)能耗、能效的分析逻辑和数学模型。数学模型包括预测的具体方法及配套的数学模型。

模型需考虑定流量运行方案优化、月份流量分配、月份批次对能耗的影响、非稳态因素对能耗的影响等部分。建立预测月份流量分配优化及运行方案优化的目标函数。在预测模型中考虑的各种可选前提条件:综合能耗最低、能耗费用最低。预测月份流量分配模式主要有:平均流量、频率分配、最优流量组合、指定流量组合等方式。多种测算模式可以得到多个最优能耗测算值,所构成的区间可以提供更多最优能耗信息。

定流量稳态运行方案优化模式,指定各管段的输油流量:①理想匹配是不考虑节流;②开泵方案优化;③指定开泵方案。

热油管道定流量稳态运行输油温度设定模式:①指定输油温度(出站/进站温度);②自动设定进站温度为允许最低进站温度;③输油温度优化。

基于能耗预测的原油管道分类:①不设加热站的单一品种输送管道;②不设加热站的多品种顺序输送管道;③设加热站的单一品种输送管道;④设加热站的多品种顺序输送管道。

几种原油按一定比例混合,混合原油视为一种单一原油。针对每种类型原油管道分别建立具有较强通用性的最优能耗预测模型。基于每种类型原油管道,分别开发具有较强通用性的最优能耗预测软件。

(5)基本步骤(图7-1)

图7-1

2.能耗测算数学模型

(1)稳态优化能耗测算数学模型

决策变量的选取。全线泵组合和出站油温。

目标函数。管道系统单位时间内运行总能耗(kgce)最低。

S=+SE

当管线为不加热输送时,为零。

约束条件。①全线泵组合与管路的匹配约束。各泵站提供的有效扬程之和等于全线总摩阻损失与位差之和。②站间管段水力条件约束。③站间管段热力条件约束。④泵站约束。⑤热站约束。

(2)输量分配模型

流量在输油周期内波动相对频繁,事先无法准确预知,同时该因素对热能消耗和电能消耗有较大影响。

重点研究每月周期内,日输量的波动规律。

月任务输量分配方法如下:①平均流量法。月输油任务平均分配到日,定流量稳态优化计算日能耗,日能耗累加得到月总输油能耗,平均流量可能导致泵管匹配状况不佳,平均流量可能导致泵效低,适用于满负荷或流量稳定的管道。②频率分配法。对于不满负荷运行的原油管道,由于各种内外部条件限制,测算月份的管道日输量可能是波动的,难以预先确定测算月份每天的日输量。基于历史数据,统计一个月内,日输量/月输量百分比的分布频率。根据统计频率,确定测算月份的日输量分配。一般不同月份的日输量波动情况有所不同,一般按月统计日输量分布。③最优流量组合法。将月任务输量平均分配到每一天,在其所对应的日输量下运行有可能泵管匹配不好,例如节流比较大或者泵的运行效率比较低,因此该流量对应的能耗值比较大。拟定若干备选的流量,通过优化的方法确定最佳的流量搭配方案。④指定流量组合法。根据管道特点,指定几个流量,确定每个流量的运行时间,在预测具体管道的月输油能耗时,可以根据需要用不同的输量分配方法,调用不同的输量分配方法将得到不同的能耗指标,将这些能耗指标构成的区间,作为最优能耗区间。

3.能耗测算软件计算逻辑

正算法的技术路线是利用现有仿真技术及管道模型研发“正算法”能耗预测软件(图7-2)。经研究分析,“ 正算法”能耗预测软件开发建议用基于SPS等仿真技术进行二次开发的技术路线。

图7-2 能耗测算软件计算逻辑图

预测模块应实现根据月度、年度输量给定的输量,自动生成开机输送方案,并预测不同方案的能耗,对油气管道能耗进行自动预测;要具备对燃料费、动力费用预测的功能。

预测模块内部应包括“方案自动生成子模块”、“ 能耗指标折算子模块”、“ 逻辑判断子模块”等三个功能子模块。“方案自动生成子模块”、“能耗指标折算子模块”、“逻辑判断子模块”等三个功能子模块应通过通信协议与SPS仿真软件联动,实现自动预测能耗的逻辑过程。开发“方案自动生成子模块”,将压缩机机组、泵机组、加热炉的开机方案,作为此子模块的主要输出信息,按照一定的算法,自动生成若干开机方案。开发“能耗指标折算子模块”,将耗能量及能耗指标作为此子模块的主要输出信息。开发“逻辑判断子模块”,根据SPS仿真软件输出的管输介质输量、压力、温度以及耗能设备功率、转速、负荷等数据,和“能耗指标折算子模块”输出的耗能量及能耗指标,按照既定逻辑判断是否需要继续试,并给出优先挑选哪一类方案进行试算的指向性输出信息。

正算法所实现的能耗预测软件是离线的,即不以实时的SCADA数据作为数据来源进行业务过程的修正。基于“正算法”的能耗预测软件,应以油气管道离线水力、热力仿真计算软件为基础进行开发。能耗预测模块,应实现对天然气管网、成品油管道、原油管道的能耗预测。

4.能耗测算算例

以某管道为例:该管道有5个泵站,每个泵站均只开启1台泵。

第一步:通过用户输入界面,输入管道输送方案,即管道输量及下游各分输站分输量或注入量。

第二步:得到开机方案的全集,暂时不考虑管道水力热力条件,将5个泵站所有的排列组合全部进行罗列,如表7-1所示,设每站开启1台机,则本例则包括31种开机方式。这31种开机方式中,肯定包括若干个满足用户所输入的分输方案的开机方案,且肯定包括1个或几个相对最优方案。接下来要对这些方案进行筛选。

表7-1 开机方案全集列表

第三步:对全集做初步筛选,筛选出若干个满足用户输入的输送方案的开机方案,筛选方法用用户根据经验事先设定筛选条件及二分法等多种方法相结合的方式,软件要提供开放的人工设定窗口,如设定液体管道首站必须启泵,则全集方案中所有首站未启泵的方案将被全部排除;或在设定某输量台阶必须至少开启3个站,则全集方案中所有低于3站的方案也被排除;若某管道未经人为设定过,则直接用二分法进行方案筛选。

设本例已设定首站必须启泵,则筛选过程如下:

1)按人为设定筛选条件优先的方式,筛选出所有首站未启机的方案,经此步筛选过后,由31种开机组合方式减少为16种组合方式,如表7-2所示:

表7-2 第一次筛选后开机方案列表

2)用二分法进行筛选,从中间的方案(序号为8的方案)开始计算。如果方案8可以满足输送要求,则排除开机方案1~7,保留开机方案8~16,如表7-3所示:

表7-3 第二次筛选后开机方案列表

3)再次利用二分法进行筛选,在剩余的开机方案中,选择中间的方案(9/2取整,即序号为5的方案)开始计算,如果开机方案5满足输送要求,则排除开机方案6~9,保留开机方案1~5,如表7-4所示:

表7-4 第三次筛选后开机方案列表

4)循环上述计算过程,当开机方案所剩达到足够少时,依次带入SPS仿真系统,进行模拟仿真,计算能耗。

第四步:针对得到的N种可行的开机方案,结合调度手册的控制原则,生成Intran控制脚本文件或其他格式的文件。Intran文件的控制逻辑,应与控制中心的调度操作手册的控制原则相吻合。例如:某台泵的入口压力达到1MPa的时候,才可以开启该台泵。以控制SPS模型进行仿真。

第五步:SPS进行模拟仿真。

第六步:通过能耗指标折算模块,换算各种开机方案下的耗气量、耗电量、耗油量、电单耗、气单耗、油单耗、生产单耗、耗能数量比等能耗指标。

第七步:逻辑判断子模块根据SPS仿真软件输出的管输介质输量、压力、温度以及耗能设备功率、转速、负荷等数据,和“能耗指标折算子模块”输出的耗能量及能耗指标,按照既定逻辑判断是否需要继续试,并给出优先挑选哪一类方案进行试算的指向性输出信息。

第八步:输出N种开机方案的能耗和周转量。

近年来,数字孪生这个词不断地出现在公众视野,尤其是随着物联网技术的发展,数字孪生不断现身于各行各业,乍一看,这个概念还是比较生僻,那数字孪生到底是什么呢?

先来看看数字孪生的定义,《数字孪生应用白皮书》是这样说的:

“数字孪生是具有数据连接的特定物理实体或过程的数字化表达,该数据连接可以保证物理状态和虚拟状态之间的同速率收敛,并提供物理实体或流程过程的整个生命周期的集成视图,有助于优化整体性能。”

简单翻译一下,数字孪生就是将现实世界中的事物在虚拟数字空间映射,构建物理实体的“数字化克隆体”,以历史数据、实时数据为基础,借助数据模型,实现对现实场景或对象的映射呈现、分析优化、诊断预测等。

数字孪生构建三步骤

翻阅了很多资料和信息之后,粗略总结了数字孪生的构建及应用过程,可以分为三步:复刻、构建、应用。

复刻:现实空间的数字化重建

首先就是运用空间集设备对现实空间进行精准复刻,并通过物联网实现物理空间与数字空间之间的虚实互动,在这个过程中会集并传输现实空间的相关数据,包括结构数据、传感器数据、运营数据等,为后面模型构建及优化做准备。

构建:数据驱动模型学习优化

当把真实空间及物理实体数字化复刻以后,相关数据也已经上传到云端,在对数据清洗处理以后,就可以结合处理后的数据,运用相关技术能力构建数字孪生模型,并持续验证优化。

应用:功能开发及实际应用

模型构建以后就是具体的应用里,在这个阶段,会结合具体的应用场景以及行业特性,做具体的功能开发和应用,比如工厂车间的预测性维护、道路交通的模拟规划等。

数字孪生应用价值

说了这么多,那数字孪生到底有什么用呢?具体可以应用在哪些场景或者哪些行业呢?接下来就一一解答。

航天预测模拟:作为科技最前沿的应用领域,航空航天针对数字孪生技术的应用可以说起源最早。1969年美国的阿波罗项目中,美国国家航空航天局(NASA)通过制造两个完全相同的航天器,形成“物理孪生”,这是最早期数字孪生技术的雏形。随着技术的迭代发展,数字孪生技术在航空航天产品研发、故障检测、系统管控等方面都有着广泛的应用。

数字孪生工厂:数字孪生技术可以说是工业生产的宠儿,能够实现调配、智能化生产,显著提高生产效率。数字孪生工厂,意味着把实体的工厂搬到虚拟空间,可以实时获取工厂中的数据,实现对工厂的实时监控;同时也可以模拟生产过程,优化生产流程;还可以通过数据分析支持只能决策和预测分析……可以说,数字孪生技术在工业生产领域效果十分显著。

智慧交通模拟:数字孪生在智慧交通行业的应用,主要是将实时集的交通数据纳入到建立的交通模型体系中,通过大数据分析、人工智能AI和交通仿真技术,实现真实路面交通和虚拟环境的深度融合,比如可以进行车流变化模拟推演,也可以模拟交通信号灯变化,从而有助于更好地规划交通路线,为管理部门优化交通管理调度提供技术支持。

打造智慧城市:利用数字孪生技术,可以在虚拟网络空间构建一个与物理世界相对应的孪生城市,通过数据全域标识、状态精准感知、数据实时分析等,来实现城市的模拟、监控以及控制,解决城市规划、设计、建设、管理、服务过程中的诸多问题。

目前,数字孪生被广泛应用于工业制造、智慧城市、智能交通、能源等各大行业领域,作为虚拟仿真的重要领域,数字孪生正以其强大的能力在各个行业中创造前所未有的创新。