1.Jason反演技术在天然气水合物速度分析中的应用

2.西安石油大学石油与天然气工程学科研究生培养方案

3.油气储运工程论文

4.气烟囱识别分析技术在天然气水合物研究中的应用

5.油气智能开技术专业怎么样_就业方向_主要学什么

6.奥陶系风化壳产层天然气的来源分析

气田动态分析_天然气动态分析课程有哪些收获呢啊

你是要转专业吗?那会有些难度。因为学石油的话,要看你本科是不是学相关专业的,夸得太多,导师是不要的。你是黑龙江的,自然知道大庆石油学院了,这个我不用说了,你比我清楚。

西南石油当然也是很牛的学校,每年毕业生没毕业就被签走了,大部分去了东海,南海石油开地区,待遇很好,年薪十几万。着你肯定也清楚。不然怎么会想考石油。最好石油大学,不论是实力,还是地域都是其他两个学校没法比的。

下面说一下你问的那两个专业。

石 油 与 天 然 气 工 程 Petroleum and Natural Gas Engineering

石油与天然气工程是研究石油与天然气勘探、评估、开、油气分离、输送理论和技术的工程领域。其工程硕士学位授权单位培养从事石油与天然气生成环境、勘探、油气井工程设计、测井数据集和处理、油气田开、油气储运以及工程管理的高级技术人才。研修的主要课程有:政治理论课、外语课、工程数学、弹塑性力学、计算机应用技术、高等流体力学、高等渗流力学、油藏数值模拟、油田化学、收率原理、现代油气勘探技术、现代油气井工程、现代凿井工程、天然气工程、高等油藏工程、高等油工程、高等输油管道工程、高等输气管工程、油气田输系统、油气管道运行模拟、天然气液化技术、高等管理学基础、能源经济等。

一、概述

石油与天然气工程是一个运用科学的理论、方法、技术与装备高效地钻探地下油气、最大限度并经济有效地将地层中的油气开到地面,安全地将油气分离、计量与输运的工程技术领域。石油与天然气作为人类社会能源的重要组成部分,由于其不可替代性和自身的不可再生性,在世界经济的发展、人类社会生活与文明中占有极其重要的地位。由于石油与天然气存在着储层埋藏深,物性有低渗、超低渗,油品有稠油、超稠油,加之高压高温、地层非均质、井眼形成难等特点,给钻探与开发增加了很大的困难。目前,我国石油与天然气收率还比较低、地质条件复杂,深井与超深井钻探与开成本还比较高,因此是一项高投入、高风险、但效益明显的产业。在我国,2l世纪将是石油与天然气工程得以迅速发展的时代。

石油与天然气工程涉及工程力学、流体力学、油气地质、渗流物理、自控理论、计算机技术等基础和应用学科,需要解决的工程问题有钻井、完井、测试、油气藏开发地质、油气渗流规律、油气田开发方案与开技术、提高收率、油气矿场收集处理、长距离输送、储存与联网输配等工程问题。本工程领域与矿产普查与勘探、地球探测与信息技术、矿工程、工程力学、化学工程、机械工程、交通运输工程等学科相关。

二、培养目标

培养从事石油与天然气工程领域所属油气井工程、油气田开发工程、油气储运工程中科技攻关、技术开发、工程设计与施工、工程规划与管理的高层次人才。

石油与天然气工程领域工程硕士应具有本工程领域坚实的基础理论和宽广的专业知识及管理知识,掌握解决工程问题的先进方法和现代化技术手段,具有独立担负工程技术或工程管理工作的能力以及解决工程实际问题的能力,具有较好的综合素质和较强的创新能力和适应能力。掌握一门外语,能较熟练地使用计算机。

三、领域范围

领域范围有以下几个方面。

油气井工程:油气井工程力学,油气井工作液的化学和力学,油气井工程测量与过程控制,油气井测井数据集、处理与解释。

油气田开发工程:油气藏描述及开发地质建模的理论与方法,渗流理论和油气藏数值模拟,油气田开发理论与方法,油气工程理论与技术,提高收率理论与技术,油气化学工程与理论。

油气储运工程:油气长距离管输技术,多相管流及油气田集输和油气处理技术,油气储运及营销系统优化,油气管道和储罐的强度研究,油气储运设施施工及安全、防腐技术。

石油与天然气工程管理。

四、课程设置

基础课:科学社会主义理论、自然辩证法、外语、工程数学、应用弹塑性力学、计算机应用基础、技术经济学等。

技术基础课:高等流体力学、高等渗流力学、油藏数值模拟、油田化学、提高收率原理、渗流物理、油气藏经营管理、运筹学等。

专业课:现代油气井工程、现代完井工程、天然气工程、高等油藏工程、高等油工程、高等输油管道工程、高等输气管道工程、油气田集输系统、油气管道运行模拟、项目管理、能源经济学等。

上述课程可定为学位课程和非学位课程。此外,还可以由培养单位与合作企业根据实际需要确定其他课程。课程学习总学分不少于28学分。

五、学位论文

论文选题应直接来源于生产实际或者具有明确的生产背景和应用价值,或者是一个完整的工程技术项目的设计或研究课题,或者是技术攻关、技术改造专题,或者是新工艺、新设备、新材料、新产品的研制与开发,也可以是工程管理课题。选题要求有难度、有新意、有足够的工作量。

对于技术攻关的成果,应有与国内外同类理论、方法与技术的对析;对于新工具、新工艺设计与开发的技术成果,论文应具有设计方案的比较、评估、参数计算模型与结果、完整的图纸;对于重大工程项目管理的成果,必须给出项目的系统组成、目标分析、风险与效益分析、与管理方案及措施、收益与创新管理方法。://.wszsw

一、石油工程计算技术

“石油工程计算技术”是我校“石油与天然气工程”一级学科下自主设置的二级学科,具有博士和硕士学位授予权,主要包含以下研究方向:

1、石油工程仿真模拟计算

(i) 油气井工程中的计算与仿真; (ii) 油气藏渗流模拟与仿真;

(iii) 油气井生产过程动态模拟与仿真; (iv) 储运与集输过程的计算及仿真。

2、油气田开发系统信息分析与处理

(i) 动态数据处理与数据挖掘 ; (ii) 油气田数据库及管理信息系统;

(iii) 系统模式识别与系统辨识; (iv) 油气田开发软件开发与集成技术。

3、 石油工程数值计算

(i) 微分方程数值解 ;(ii) 优化计算方法;

(iii) 数值代数方法; (iv) 并行计算技术

可以说这个专业就是计算机专业,只不过把计算机应用在了石油工程上面,一般搞计算机的人都可以搞这个,所以,竞争力很强。不建议考。以上是个人看法,仅供参考。

Jason反演技术在天然气水合物速度分析中的应用

[1]殷建平,袁芳. 从天然气短缺谈我国天然气安全问题[J]. 价格理论与实践,2010,(4).

[2]殷建平,黄辉. 从俄乌天然气争端谈中国的天然气安全[J]. 中国国土经济,2009,(5).

[3]殷建平,黄辉. 我国天然气供求分析和未来消费政策选择[J]. 改革与战略,2010,(4).

[4]蒋克武. 上海天然气安全储备体系规划研究[Z]. 上海市: 上海燃气工程设计研究有限公司,.

[5]蒋克武. 新形势下上海能源安全战略课题——燃气系统安全分课题研究[Z]. 上海市: 上海燃气工程设计研究有限公司,.

[6]贾大山. 中国石油、天然气水上储运安全战略研究[Z]. 北京市: 交通部水运科学研究院,.

[7]蒋克武. 长江三角洲天然气发展趋势及战略保障研究[Z]. 上海市: 上海燃气工程设计研究有限公司,.

[8]. 进口液化天然气(LNG)的安全和质量状态的动态分析系统研究[Z]. 广东省: 深圳出入境检验检疫局,.

[9]周志斌. 川渝地区天然气供应安全保障系统研究与应用[Z]. 四川省: 中国石油西南油气田分公司天然气经济研究所,.

[10]蒋克武. 上海市天然气主干管网系统规划修编(2007-2020年)[Z]. 上海市: 上海燃气工程设计研究有限公司,.

[11]梅宗清. 井口安全液压截断系统[Z]. 四川省: 泸州川油钻工具有限公司,.

[12]. 燃气汽车系统安全性研究[Z]. 重庆市: 重庆汽车研究所,.

[13]张建军. 关于安全发展天然气汽车的措施研究[Z]. 河南省: 郑州燃气股份有限公司,.

[14]雷远进. 高性能新型瓦斯催化传感器[Z]. 云南省: 贵研铂业股份有限公司,.

[15]. 天然气固态储存新技术[Z]. 广东省: 中国科学院广州能源研究所,.

[16]郭绪明. Mt法天然气流量标准装置[Z]. 四川省: 四川石油管理局勘察设计研究院,.

[17]蒋克武. 上海市21世纪初期天然气发展应对策略研究[Z]. 上海市: 上海燃气工程设计研究有限公司,.

[18]郭伟斌. 天然气事故备用站对上海保障安全供气的研究[Z]. 上海市: 上海市燃气管理处,.

[19]宋东昱. 天然气管道系统可靠性及预评价技术研究[Z]. 北京市: 中国石油规划总院,.

[20]焦玉清. GEMARKV燃气轮机控制系统在大型天然气处理装置中的应用[Z]. 河南省: 中原油气高新股份有限公司天然气处理厂,.

[21]杨双华. 输气管道安全保护运行机制研究[Z]. 四川省: 中国石油西南油气田分公司天然气经济研究所,.

[22]段玉波. 油气初加工系统安全评价及风险防范技术研究[Z]. 黑龙江省: 大庆石油学院,.

[23]金志江. 承压类特种设备安全保障与寿命预测技术[Z]. 浙江省: 浙江大学材料与化学工程学院,.

[24]彭焕. 气相高压露点检测仪[Z]. 四川省: 成都兰华电子工程有限公司,.

[25]. 橇装式压缩天然气加气站技术与设备[Z]. 北京市: 北京兰天达汽车清洁燃料技术有限公司,.

[26]周懋钰. 陆上天然气工程消防安全技术咨询[Z]. 上海市: 上海市科技咨询服务中心消防分中心,.

[27]朱小华. 天然气加气站危险分析及安全评估方法研究[Z]. 四川省: 中国石油西南油气田销售分公司,.

[28]杨兰林. 微电脑油井防喷控制装置研制[Z]. 广东省: 广东省广州石油机械厂,.

[29]廖勇,王恒. 论我国石油天然气安全及其法律保障体系的构建[J]. 郑州市委党校学报,2010,(3).

[30]宋杰鲲,张在旭,李继尊. 我国石油天然气安全预警研究[J]. 河南科学,2008,(8).

[31]李青平,杨先,万云. 深圳市天然气安全应急储备及事故气源的研究和探讨[A]. 蒋连成.[C].: ,2007:.

[32]. 压力容器专用缠绕机[Z]. 浙江省: 武汉理工大学温州研究院,.

[33]邬云龙. 气田安全信息实时无线监控系统[Z]. 四川省: 什邡慧丰油机械有限责任公司,.

[34]. 压缩天然气汽车(CNGV)系统安全性研究[Z]. 重庆市: 重庆汽车研究所,.

[35]. 油改气气化成套新技术[Z]. 甘肃省: 中国石化总公司兰州石油化工设计院,.

[36]. LNG罐式集装箱珠海-上海水运方案安全评估[Z]. 北京市: 交通部科学研究院,.

[37]涂亚庆. 天然气处理全过程模拟与优化方法及在气田中的应用[Z]. 重庆市: 解放军后勤工程学院,.

[38]刘颖. 埋地天然气管线防腐蚀涂装系统及其与阴极保护系统的交互作用和有效保障的研究[Z]. :北京市燃气集团,.

[39]李黎,王一丁,李树维. 红外气体检测技术在天然气安全生产中的应用[J]. 天然气工业,2011,(1).

[40]张庆生. 1200m^3/35MPa橇装制氮注氮安全气举技术[Z]. 河南省: 中原石油勘探局油工程技术研究院,.

[41]. X80钢级Φ1219×22~32mm感应加热弯管[Z]. 河北省: 河北省盐山县电力管件有限公司,.

[42]. 天然气缴费及客户关系管理系统[Z]. 黑龙江省: 大庆天然气有限责任公司,.

[43]罗东晓. 城市燃气分步置换法应用于广州市天然气的快速、经济与安全置换[Z]. 广东省: 华南理工大学,.

[44]张志东. 吐哈油田天然气集输与处理系统的优化与实施[Z]. 新疆维吾尔自治区: 中国石油吐哈油田分公司开发事业部,.

[45]张凤群. 大港油田天然气处理及轻烃回收系统适应性研究和应用[Z]. 天津市: 大港油田天然气公司,.

[46]程志庭. Φ4500×1400mm天然气环形加热炉[Z]. 安徽省: 机械工业第一设计研究院,.

[47]. 压缩天然气汽车改装及性能分析[Z]. 山东省: 青岛公交集团有限责任公司,.

[48]. 天然气泄漏激光多路监测仪[Z]. 安徽省: 合肥工业大学,.

[49]. 中国大中型气田勘探开发关键技术研究[Z]. 北京市: 中国石油天然气集团公司,.

[50]冯幸福. 清洁燃料公共汽车产品开发[Z]. 北京市: 北京市客车总厂,.

西安石油大学石油与天然气工程学科研究生培养方案

梁劲1 王宏斌1,2 梁金强1

(1.广州海洋地质调查局 广州 510760;2.中国地质大学(北京)北京 100083)

第一作者简介:梁劲,男,11年生,高级工程师,1995年毕业于成都理工学院信息工程与地球物理系应用地球物理专业,主要从事天然气水合物调查与研究工作。

摘要 本文用Jason 反演技术对南海北部陆坡A 测线纵波速度进行计算,结合BSR、振幅空白带以及波形极性反转等多种水合物赋存信息的分析,对水合物成矿带的速度特征进行了综合研究,结果表明:低速背景中的高速异常,是天然气水合物赋存的重要特征;高速异常体一般呈平行于海底的带状分布;在高速异常的内部,速度也是不断变化的。一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,反映在水合物矿带内部,水合物饱和度由矿体中心向边缘逐渐降低的特征。本文的研究成果进一步表明高精度速度分析不仅可以帮助寻找水合物矿点,还可以进一步判定水合物的富集层位。

关键词 Jason 反演技术 天然气水合物 速度分析

1 前言

天然气水合物是在低温、高压环境下,由水的冰晶格架及其间吸附的天然气分子组成的笼状结构化合物,广泛分布于海底和永久冻土带。温度和压力是天然气水合物形成和保存最重要的因素(王宏斌等,2004)。针对天然气水合物的野外调查及研究表明:高分辨率的地震勘探方法是天然气水合物调查评价中行之有效的方法。地震反演技术一直是地震勘探中的一项核心技术,其目的是用地震反射资料反推地下的波阻抗、速度、孔隙度等参数的分布,从而估算含天然气水合物层参数,预测天然气水合物分布状况,为天然气水合物勘探提供可靠的基础资料。常用的地震反演技术有Jason、Strata、Seislog和ISIS等,其中Jason反演技术在含天然气水合物层预测中因其分辨率高而得到广泛推崇,它主要由有井约束和无井约束两种方法组成(廖曦等,2002)。

速度异常是判断天然气水合物是否赋存的重要条件之一。结合BSR(Bottom Simulating Reflector)特征、波形极性特征、振幅特征以及AVO特征等目前已成为判断是否存在天然气水合物层主要手段(史斗等,1999)。大量的测试数据显示:水合物的速度与冰的速度较为接近,而比水高。与含水或含游离气沉积层相比,含水合物沉积层的密度降低,声波速率增大,含水合物层的地层速度往往比一般的地层速度高,含水合物沉积层的下部由于充填了水或气,而使水合物底界面出现速度负异常。因此,地层中速度反转是水合物赋存的一个地球物理标志。含水合物地层的声波速度与水合物的含量有关,水合物含量越高,其声波速度越高。从速度方面看,BSR是上覆高速的含水合物地层与下伏较低速的含水层或含气层之间的分界面。通常,海洋中浅层沉积层的地震纵波速度为1600~1800m/s,如果存在水合物,地震波速度将大幅提高,可达1850~2500m/s,如果水合物层下面为游离气层,则地震波速度可以骤减200~500m/s。因此,在速度剖面上,水合物层的层速度变化趋势呈典型的三段式,即上下小、中间大的异常特征(张光学等,2000)。西伯利亚麦索雅哈气田的资料表明,在原为含水砂层内形成水合物之后,其纵波的传播速度会从1850m/s提高到2700m/s;而在胶结砂岩层,这种速度会从3000m/s提高到3500m/s。深海钻探的570站位的测井结果表明,由含水砂岩层进入含水合物砂岩层时,密度由1.79g/cm3降低到1.19g/cm3,声波传播速度从1700m/s提高到3600m/s,且电导率剧烈下降。

Cascadia海域ODP889站位的VSP测井资料反映水合物底界为强烈的负速度界面,速度从水合物沉积物层的1900m/s陡降到含游离气层的1580m/s,由于VSP测井为地震测井,受钻井因素的影响较少,因此认为VSP测井真实地反映了水合物沉积层底界的速度变化(陈建文等,2004)。

国土部广州海洋地质调查局在2001~2004年在南海北部陆坡进行10000多公里的天然气水合物高分辨地震调查。本研究利用Jason反演技术,通过对南海北部陆坡区的地震速度资料的精细分析,在已圈定BSR分布范围的基础上研究陆坡区各沉积层的速度特征,最后对速度值与水合物的关系进行了分析和探讨。

2 方法原理

纯天然气水合物的密度(0.9g/cm3)和海水密度相近,而游离气的含量又十分有限,这就决定了产生BSR的波阻抗差主要由速度造成。速度反演技术的特点是在无井约束时,以地震解释的层位为控制,对所有的地震同相轴来进行外推内插来完成波阻抗反演,这样就克服了地震分辨率的限制,最佳的逼近了测井分辨率,同时又使反演结果保持了较好的横向连续性。速度反演技术的主要原理是:①通过最大的似然反褶积求得一个具有稀疏特性的反射系数系列;②通过最大的似然反演导出波阻抗;③通过波阻抗计算速度。该方法的主要优点是能获得宽频带的反射系数,是一种基于模型的反演,具有多种建模方法,对所建模型进行比较分析,并使地质模型更趋合理,反演结果更加真实可靠(郝银全等,2004)。

波阻抗反演方法的出发点是认为地下的反射系数是稀疏分布的,即地层反射系数由一系列叠加于高斯背景上的强轴组成。具体反演是从地震道中,根据稀疏的原则抽取反射系数,与子波褶积生成合成地震记录,利用合成地震记录与原始地震道的残差修改反射系数,得到新的反射系数序列,然后再求得波阻抗。其具体步骤是:

设地层的反射系数是较大的反射界面的反射和具有高斯背景的小反射叠加组合而成的,根据这种设导出一个最小的目标函数(安鸿伟等,2002):

南海地质研究.2006

式中:R(K)为第一个样点的反射系数,M为反射层数,L为样总数,N为噪音变量的平方根,λ为给定反射系数的似然值。

最大的似然反演就是通过转换反射系数导出宽带波阻抗的过程。如果从最大的似然反褶积中求得的反射系数式R(t),则波阻抗:

Z(i)=z(i-1)×(1+R(i))/R(1-i) (2)

利用波阻抗和速度的关系式:

v=Z(i)/ρ (3)

即可得到速度值。其中,ρ为地层密度,可从区域测井资料结合该测线重力资料反演求取。

在上述过程中为了得到可靠的反射系数估算值,可以单独输入波阻抗信息作为约束条件,以求得最合理的速度模型。一方面,速度反演结果是一个宽频带的反射序列和波阻抗及速度数据,同时加入了低频分量,使反演结果更能正确反映速度变化规律;另一方面,它有多种质量控制方法,具体表现为监控子波的选取、同相轴的连续追踪、反演结果准确性的判断和提供多种交汇显示的相关性分析。所以利用速度反演可对地震剖面上任一相位进行速度反演,在每一个CDP点都可得到任一个同相轴速度数据,并利用二维的反射波的速度层析成像反演方法得到高度连续的速度剖面,如果地震测线足够密,还可利用三维速度反演得到速度体图像。

3 实现过程

3.1 初始模型的确立

在地质规律的指导下,利用地震和测井资料开展沉积特征分析和沉积旋回划分;建立岩石-电性关系,进行砂层组和单砂层对比;在地震剖面上提取各含油砂层组反射波属性,建立地震属与矿体的关系,实现地震-测井综合预测矿体平面分布厚度,开展层间矿体组外推预测;建立初始速度场;在地震属性约束下开展地震反演,反演层间小层矿体厚度。细分层反演层位的标定正确与否直接影响反演结果的精度。因此,在反演过程中对子波提取、能谱特点、信噪比、频谱及反射系数的研究至关重要(闫奎邦等,2004)。技术路线流程如图1所示:

3.2 初始速度场的获得

初始速度场的获得首先要对速度谱进行解释,速度谱的解释和取值是否合理,将直接影响均方根速度的计算精度。具体步骤如下:

1)速度谱的解释先从地质条件简单、反射层质量好、能量团强、干扰少的剖面段开始,绘制叠加速度-反射时间曲线,并逐渐向外扩展;

2)结合地震剖面的反射特征,判断速度极值点是否正确,并选择读取能量团最大的极值点。排除干扰波能量团,从而求得有效波的叠加速度;

3)对相邻速度谱进行比较,通过比较速度谱曲线的形状、相同反射层的速度极值等方法予以检查和修改。

4)每隔40个CDP拾取一组数据,利用地震剖面上的反射倾角数据对它们进行校正,便可得到均方根速度(梁劲等,2006)。

图1 速度反演技术线路流程图

Fig.1 The flow chart of the velocity inversion of technical route

3.3 子波的提取

子波提取时,要使能量集中于子波的主瓣,与地震子波形态吻合。如果所提子波近于零相位,则从波峰向两侧能量衰减较快,波峰两侧波形对称;在子波的能谱特征分析,要使能量都集中在地震波的主频范围内;有井资料时,要对井资料都作了子波与地震波自动关联质量控制。保证子波能谱与地震波能谱相吻合,是反演中较为重要的一方面,子波能谱的峰值与地震波主频的能谱峰值相吻合。首先了解合成记录与地震记录之间的偏差。通过合成记录与地震记录之间的偏差分析,对Jason反射系数偏差、能谱偏差进行进一步的校正,使合成记录与地震记录之间的偏差减小。然后通过反射系数与地震资料之间偏差分析,取相应的手段校正,使地层与合成记录反射系数相吻合。再进行信噪析,使反演处理后的信噪比得到最大限度的提高。通过一系列质量控制手段,使各油层合成记录与地震记录的标定精度得到了较大的提高。

关于速度反演可信程度,不能完全由反演方法确定,关键在于获取地震记录的质量和反演前处理流程的振幅保真度。另一个影响因素是数值模拟结果应当是比较准确的,这与计算方法有关,也与子波拾取和地质构造模型有关。至于反演结果的灵敏度,主要由拟合误差值和收敛速度来判断。如果给定的初始模型正确,即与实际地质结构一致,则拟合的误差较小且收敛速度快。本文工作由于受实际情况限制,没有实际的测井资料验证,因此反演所得速度的准确性和精度会受到一定程度的影响。

4 速度剖面特征

运用多种特殊地震成像综合分析,是天然气水合物地震资料解释的关键技术。目前一般用识别BSR、振幅空白带、波形极性反转、速度异常、波阻抗面貌和AVO等天然气水合物地震相应特征来综合分析沉积物中是否含有水合物。高精度的层速度分析可帮助判定水合物的富集层位,速度及振幅异常结构是水合物与下伏游离气共同作用形成的特殊影像,剖面上表现为“上隆下坳”结构,多层叠合构成一明显的垂向“亮斑”这一特殊成像结构在未变形的水合物盆地内较适用于寻找水合物矿点,并可据此定量估算水合物盆地内水合物的数量,分析BSR上下的详细速度结构,是水合物地震资料综合解释的重要手段(张光学等,2003)。

图2 南海北部陆坡测线A道积分剖面

Fig.2 Trace integration profile of the line A in north slope of the South China Sea

图2是南海北部陆坡测线A的地震反射道积分剖面,从图中可以看出,该剖面中部及右下角距海底大约350ms处出现一强振幅反射波,大致与海底反射波平行,与地层斜交,BSR特征明显。在波形极性方面,海底反射波和BSR都表现为成对出现的强振幅双峰波形特征,海底反射波表现为蓝红蓝特征,而BSR表现为红蓝红特征,这表明相对于海底,BSR显示出负极性反射同相轴,即所谓的极性反转(与海底反射相反)。反射波的极性是由反射界面的反射系数决定的,而反射系数则与界面两侧的波阻抗差有关。实际上,海底和BSR都是一个强波阻抗面,海底是海水和表层沉积物的分界面,上部为低速层,下部为相对高速层,反射系数为正值;BSR是含水合物层与下部地层(或含气层)的分界面,上部为高速层(水合物成矿带是相对高速体),下部为相对低速层(如含游离气,则速度更低),反射系数为负值,因此造成了BSR和海底反射波的极性相反现象(沙志彬等,2003)。图3是用速度反演法反演出来的纵波速度剖面,该速度剖面明显显示出一近似平行于海底的相对高速地质体,其位置恰好在BSR上方。高速地质体的纵波速度大约在2000~2400m/s,其上面的低速层的纵波速度大约在1500~1800m/s,而下面的低速层的纵波速度大约在1500~1900m/s,没有明显的游离气存在特征,但根据其高速地质体特征、BSR以及波形极性反转分析,可以认为南海北部陆坡测线A的相对高速地质体极可能是水合物成矿带。

图3 用速度反演法计算的南海北部陆坡测线A纵波速度剖面

Fig.3 P velocity profile of the line A in north slope of the South China Sea computed by velocity inversion

由图3可见,水合物成矿带内部速度是变化的,表明水合物分布不均匀,呈平行于海底的带状分布,中心速度最高,由中心到边缘速度逐渐降低。海底以下有3个近似平行海底的低速和高速带:①海底与高速体之间的相对低速带,为水饱和带;②水合物成矿带;③水合物成矿带下的低速带。水合物成矿带下面的低速带在速度剖面上没有明显的低速特征,由此推断水合物成矿带下可能不含游离气,或者是气体的饱和度很低。

5 结论

水合物的生成除了需要一定的温度和压力条件外,还需要大量的碳氢气体和充足的水。这就需要地层具有较高的孔隙度和渗透率。未固结沉积岩的孔隙度很高,渗透率大,具备水合物生成的物理条件。具备这种特征的未固结沉积岩的地震波速度较低,而含水合物地层的地震波速度增大。这就形成了水合物成矿带作为低速背景中的高速地质体特征。另外,水合物的生成受温度和压力控制,一般情况,等温面和等压面近似平行于海底,因此低速背景中近似平行于海底的相对高速地质体是水合物成矿带的特征(刘学伟等,2003)。

通过对南海北部陆坡A测线纵波速度的计算,并且结合BSR和振幅空白带识别以及波形极性反转等多种特殊地震成像进行综合分析,我们可以进一步了解水合物成矿带的速度特征:揭示水合物成矿带的高速异常一般呈平行于海底的带状分布,在高速异常的内部,速度也是不断变化的,一般在异常体的中心速度最高,由中心到边缘速度逐渐降低,该现象反映在水合物矿带内部,水合物分布并不均匀,水合物饱和度由矿体中心向边缘逐渐降低。分析BSR上下的详细速度结构,是水合物地震资料综合解释的重要手段。高精度速度分析可帮助判定水合物的富集层位,较适用于寻找水合物矿点,并可据此估算水合物量。

参考文献

安鸿伟,李正文,李仁甫,等.2002.稀疏脉冲波阻抗反演在XY油田开发中的应用.石油物探,41(1):56~60

陈建文,闫桂京,吴志强,等.2004.天然气水合物的地球物理识别标志.海洋地质动态,6:9~12

郝银全,潘懋,李忠权.2004.Jason多井约束反演技术在油气储层预测中的应用.成都理工大学学报,31(3):2~300

梁劲,王宏斌,郭依群.2006.南海北部陆坡天然气水合物的地震速度研究[J].现代地质,20(1):123~129

廖曦,马波,沈浩,等.2002.应用Jason软件进行砂体及含气性预测.天然气勘探与开发,25(3):34~42

刘学伟,李敏锋,张聿文,等.2005.天然气水合物地震响应研究——中国南海HD152测线应用实例.现代地质,19(1):33~38

沙志彬,杨木壮,梁金强,等.2003.BSR的反射波特征及其对天然气水合物识别的应用.南海地质研究,15(1):55~61

史斗,郑军卫.1999.世界天然气水合物研究开发现状和前景.地球科学进展,14:330~339

王宏斌,梁劲,龚跃华,等.2005.基于天然气水合物地震数据计算南海北部陆坡海底热流.现代地质,19(1):67~73

闫奎邦,李冬梅,吴小泉.2004.Jason反演技术在岩性识别中的应用.石油物探,43(1):54~58

张光学,黄永样,陈邦彦,主编.2003.海域天然气水合物地震学.北京:海洋出版社

张光学,文鹏飞.2000.南海甲烷水合物的地震特征研究,首届广东青年科学家论坛论文集,中国科学技术出版社

The Application of Jason Inversion Technology in Velocity Analysis of Gas hydrate

Liang Jin1 Wang Hongbin1,2 Liang Jinqiang1

(1.Guangzhou Marine Geological Survey,Guangzhou,5107602.China University of Geosciences(Beijing),Beijing,100083)

Abstract:The P velocity of A seismic profile in the north slope of the South China Sea were calculated by Jason inversion method.The velocity characterostic of the gas hydrate bed was researched in detail based on the calculated result and the information of gas hydrate existing including BSR,amplitude blanking and polarity reversion of the weform.Research shows that:The abnormity of higher velocity in the background of lower velocity is an important characteristic of gas hydrate existing;The abnormity of higher velocity which distribute as a belt usually parallel to the seafloor;The velocity changes gradually at the inner of the abnormity of higher velocity with the highest velocity at the center of the abnormity whereas the lowest velocity at the margin of it,which suggests that the saturation of gas hydrate decreases gradually from the center to the margin.The result that mentioned above suggest that high resolution velocity analysis not only help to search the hydrate spot but also help to estimate the rich layer of gas hydrate.

Key Words:Jason Inversion Technology Gas hydrate Velocity Analysis

油气储运工程论文

西安石油大学石油与天然气工程学科是西安石油大学下属的一个在职研究生学科,西安石油大学大学设有石油工程学院、地球科学与工程学院、电子工程学院、机械工程学院、材料科学与工程学院、计算机学院、化学化工学院、理学院、经济管理学院、人文学院、外国语学院、继续教育学院 ( 职业技术学院)、国际教育学院、思想政治理论教学科研部、音乐系、体育系16个院系部。西安石油大学石油与天然气工程学科研究生培养方案如下:

一、石油与天然气工程学科概况

“油气田开发工程”、“油气井工程”、“油气储运工程” 等学科分别于1990年、1994年和2001年获得硕士学位授权,2006年获得“石油与天然气工程”一级学科的硕士学位授权。2002年与2003年分别获得工程硕士与联合培养博士学位授权。在石油钻化学与环境保护、油气田开发与渗流理论及应用、油气井工程测量控制与信息应用技术、油气储输及安全技术等方面形成了鲜明特色。

本学科现有教授21人,副教授23人,博士学位教师38人。其中省“三秦学者”、“百人”和“教学名师”等6人,2007年被评为省级教学团队。本学科为陕西省重点学科,拥有国家、省部级重点实验室和工程中心等9个。“十一五”期间承担国家和省部级科研项目292项,科研经费共计1.1亿元。

二、石油与天然气工程培养目标

培养学生品行优良,具有良好的科学道德、敬业精神和合作精神;应掌握本学科坚实的基础理论和系统的专业知识,了解本学科发展趋势及技术研究前沿;能够运用专业知识、数学物理/化学方法、计算机技术等多种综合手段,分析和解决石油与天然气工程实践中存在的问题。具有从事科学研究工作或从事专门技术工作的能力。熟练掌握一门外语,具有实践能力、创新精神、国际视野与严谨求实的科学态度和作风。

三、石油与天然气工程培养年限

学习年限一般为3年,最长不超过4年。

四、二级学科及特色研究方向

本学科的二级学科包括:油气井工程、油气田开发工程、油气储运工程、海洋油气工程、非常规油气开发工程。

本学科形成了4个稳定的研究方向。

1. 石油钻化学与环境保护

本方向通过油气田开发工程、油气田应用化学与工程、环境化学与工程理论与技术交叉融合,进行化学作用机理研究及化学添加剂体系的开发与应用,为提高油气收率、保护储层与保护环境提供技术支撑。

2. 油气田开发与渗流理论及应用

本方向主要研究复杂油气藏油气渗流特征和物理/化学法油技术方法;建立油气田开发综合智能信息决策系统理论;将爆炸与燃烧、大功率电磁波等军工和高新技术应用于油气工程;研究物理(电磁、振动、高能气体)—化学耦合油增产新理论、新方法和新技术。

3. 油气井工程测量控制与信息应用技术

本方向主要研究油气井工程测量控制技术(特别是随钻测量和导向钻井控制技术);对油气井信息进行实时集、传输和处理,并与油气井测控技术相结合,实现油气井工程的动态监测、优化、控制以及提高决策与管理水平。

4. 油气储输及安全技术

本方向主要研究油气集输、储运工艺技术和完整性分析技术等。

五、课程设置、学时及学分规定

硕士研究生课程学习实行学分制,规定总学分(含实践环节)为32学分。课程结构设置为学位课、非学位课和必修环节。课程学习每18学时记1学分,学生必须修满32个学分。

六、培养方式与方法

1.研究生培养要德、智、体、美全面发展。政治理论学习应与思想政治教育相结合,积极参加公益劳动和体育活动。

2.研究生培养要理论联系实际,要深入掌握本学科专业的基础理论和专业知识,又要掌握教学、科研的方法,具备从事科学研究和独立担负专门技术工作的能力,要注意拓宽专业面。

3.在教学上,注重培养学生独立工作的能力,科学思维方法和创造性。教学的形式可以多样,应创造条件让研究生参加学术交流活动,了解本专业科技发展动向。

4.硕士研究生培养实行导师负责制。导师根据学位条例和培养方案,对每一位研究生制定出切实可行的培养。导师应教书育人,对研究生的政治思想、业务学习、工作科研等方面要定期检查,认真指导研究课题的进行。要注意培养研究生独立工作能力、创造能力和进取精神。

七、学位论文

论文工作是使研究生在科研方面受到较全面的基本训练,培养独立担负专门技术工作的能力。论文工作包括阅读文献、开题报告及撰写论文等。

1. 文献阅读和综述报告

在进入课题前,学生应查阅有关本研究方向和领域发展状况的国内外学术论文和技术报告,阅读数量不少于50篇(国外至少20篇),并完成一份综述报告(3000-5000字)。

2. 学位论文选题和开题报告

学位论文选题来源于应用课题或现实问题,有明确的职业背景和应用价值,并有一定的工作量。要能体现学生综合应用理论、方法和技术研究并解决工程技术问题或社会实践问题的能力。

开题报告选题应属于本学科范围。开题报告应该包括论文开题依据、研究内容、技术路径、创新点,以及论文完成拟提交的最终成果,由包括指导教师在内的论证小组给出评定意见。第五学期进行论文中期检查。

3. 学位论文质量要求

学位论文工作达到在开题中规定的目标,由学生独立完成。学位论文要求文句简练、通顺、图表清晰、数据可靠、撰写规范、严格准确地表达研究成果,实事求是地表述结论。

4. 学位论文评阅和答辩

需按照《西安石油大学硕士学位授予工作细则》执行。

考研政策不清晰?同等学力在职申硕有困惑?院校专业不好选?点击底部,有专业老师为你答疑解惑,211/985名校研究生硕士/博士开放网申报名中:s://.87dh/yjs2/

气烟囱识别分析技术在天然气水合物研究中的应用

油气储运工程论文

 古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。以下是我整理的油气储运工程论文,希望能够帮助到大家!

 摘要: 针对油气储运工程专业旧有的专业课程设置及教学内容存在的问题,提出了该专业课程模块化设置的构想,根据油气储运工程专业特点将专业课程划分为油品输送和储存技术、天然气输送和储存技术和专业通用技术三大模块,以此为基础构成完整的课程体系框架。本文内容是对油气储运工程专业课程设置改革的一点探讨,起到抛砖引玉的作用。

 关键词: 油气储运工程 课程体系 模块化

 一、油气储运工程专业概况及专业特点

 油气储运工程专业的培养目标是培养具备工程流体力学、物理化学、油气储运工程等方面知识,能在国家与省、市的发展部门、交通运输规划与设计部门、油气储运与销售管理部门等从事油气储运工程的规划、勘查设计、施工项目管理和研究、开发等工作,适应社会主义现代化建设需要,全面掌握油气储运工程领域各方面知识,具有开拓、创新精神、较强的动手能力和协调能力的高级工程技术人才。 油气储运顾名思义就是油和气的储存与运输,从油气储运工程的主要任务可以归纳得出:油气储运工程专业方向可以划分为两大方向,即油品(包括原油和成品油)输送和储存技术、天然气输送和储存技术。由于石油产品和天然气其物性参数有其共性又有其各自的特性,因此造成油气储运工程两大专业方向有共通处,又有其各个方向的独立性,两者即独立又有机的结合,这就是油气储运工程专业其独有的专业特色。

 二、国内油气储运工程专业课程设置调研

 我国的油气储运工程学科是从20世纪四、五十年代起借鉴前苏联的办学经验而建立起来的[1]。近二十年来,随着我国油气储运业的兴旺发展,对从事油气储运工作的专业技术人才的需求也不断增大,我国开办油气储运专业的大学已从原来的两所增加到20多所。其中具有代表性的大学除了江苏工业学院外,主要还有:石油大学、西南石油大学、辽宁石油化工大学和后勤工程学院。笔者调研了这几所高校的油气储运工程专业课程的设置情况,有如下认识:

 总体上各高校的油气储运工程专业课程设置架构大体相同,都兼顾了油和气两个方向,开设的专业课程主要有:油气集输工程、油库设计与管理、专业英语、储运防腐技术、泵与压缩机、油料学、储运仪表自动化、城市配气、管罐强度设计、油气管道输送、储运焊接和施工等。但由于各高校所处位置和专业定位的不同,其课程设置也有其各自的侧重点。石油大学位于北京和山东,辽宁石油化工大学位于东北地区,主要面向油田和长输管道以研究原油的储存和运输为主,其课程设置偏重于油品的输送和储存技术。西南石油大学位于四川,主要面向气田以研究天然气的储存和运输为主,其课程设置偏重于天然气的输送和储存技术。后勤工程学院位于重庆,主要研究对象是野战油库和管线的工艺和设备问题,其课程设置偏重于军用油品的储存和输送技术。江苏工业学院位于经济发达的长江三角洲,由于长江中下游地区是我国重要的石油化工基地,以此为依托,该院的油气储运工程专业主要以炼厂油品及成品油的储存和运输技术为特色,课程设置也以此为基础。

 通过调研以及在学生中的调查我们发现目前国内油气储运工程专业课程设置主要存在以下问题:

 (1)油品和天然气的课程散乱设置,课程设置繁琐复杂,未突出专业的方向性,使学生在学习过程中无法理清思路,形成清晰、完整的专业链条,找不准专业的研究方向和重点。

 (2)某些课程教学内容重复,比如:油气集输中天然气矿场集输、输气管道设计与管理、燃气输配课程中的天然气物性参数、水力计算、常用设备和管材等教学内容都存在重复,油气集输中原油矿场集输和输油管道设计与管理课程中也存在类似现象。此种重复极大的浪费了学时,降低了教学效率。

 (3)无论是油品输送系统还是天然气输送系统都是由矿场集输处理系统、干线输送系统、城市终端配送和储存系统所构成的一个产、供、销一体化的大系统。而现行的课程设置却是人为的将整个油气储运大系统分割成前述的三个子系统分别进行讲授,使学生无法形成大系统的工程概念,也无法了解各个系统间的相互联系和影响,这是同系统论和大工程观的教学理念相悖的。

 进入21世纪以来,大力发展天然气工业是我国的基本国策,未来的'全国天然气总体布局中,30%多的工程涉及江苏省。天然气利用在江苏省及其全国的大力发展,必将需要大量的天然气输送和储存技术的专门人才,因此加强油气储运工程学科天然气输送和储存技术的研究是储运学科发展的大势所趋。江苏工业学院油气储运工程专业为了在坚持原有特色的基础上有更大的发展,针对储运学科专业课程设置中存在的问题以及储运学科发展的大趋势,有必要在专业课程设置上作出改革和创新,因此我们在此方面做了以下探讨。

 三、油气储运工程专业课程模块化设置构想

 在坚持原有通识教育平台课程和专业基础平台课程体系的基础上,主要对专业课程体系进行模块化设置,按专业方向将专业课程划分为油品输送和储存技术、天然气输送和储存技术和专业通用技术三大模块。主要构想如下:

 1、专业通用技术模块

 该模块课程设置主要为油品和天然气两个专业方向都需要的通用技术课程,以储运防腐技术、储运仪表与控制工程、储运焊接与施工、油气计量技术、油气储运实验技术、油罐与管道强度设计为主要必修课程。

 随着石油天然气工业和油气储运学科的发展,越来越多的新技术、新设备、新理论应用于油气储运系统,油气储运学科的理论内涵和外延越越来越多的与其他相关学科进行交叉和渗透。例如随着SCADA技术、地理信息系统(GIS)、虚拟现实技术、智能管道机器人等尖端技术在油气储运工程上的应用,使得油气管道输送系统的自动化、信息化、智能化水平越来越高,这就使得从事油气管道设计和管理的专业人员必须具备自动化、计算机、智能机械等相关学科领域的相应知识;同时,随着世界各国经济发展对油气需求的进一步增长,国际油气营销市场的行情将会愈加变化莫测,各国都在通过建立一套完善的油气储运系统来预防国际油价、天然气价格波动给本国经济带来的不利影响。而随着我国加入WTO后油气工业国际化经营战略的实施,建成一套调度灵活的国内油气储运系统和数条与国际油气市场接轨的跨国油气输送干线的发展步伐必然加快。这一发展动向不仅会给包括油气储运业在内的相关产业带来一次很好的发展机会,同时也给油气储运学科提出了一些亟待解决的新课题,即如何规划好这样一个庞大的全国油气储运系统以及如何解决好调度管理、营销决策等方面的技术难题[2]。这就需要我们的油气储运技术人才具有一定的技术经济、工商管理和市场营销的相关知识;此外,近年来,国家大力倡导建设节约型、环保型社会,因此油气管道输送系统的节能环保技

 术也将是本学科重点研究的方向。随着油气管道完整性,可靠性管理技术的应用,对油气输送系统进行完整性管理是油气管道系统的发展趋势,将大大提高油气输送和储存系统的安全性和可靠性,这也需要油气储运技术人员具备安全工程、可靠性、节能环保的相应知识。为了适应储运学科的发展趋势并遵循“厚基础、宽专业、高素质、能力强、复合型、重德育”型的人才指导思想,专业通用技术模块应注意以下三个方向的学科交叉和扩展。

 (1)与自动化和计算机学科的交叉:在该方向拟开设自动控制原理、计算机网络技术、虚拟仪表和虚拟技术、GIS技术及应用、SCADA技术、智能清管技术等选修课程,以培养学生的计算机、自动控制和智能化等新技术的运用能力。

 (2)同工商管理和市场营销学科的交叉:在该方向拟开设石油工业技术经济学、油气营销、石油法规与国际石油等选修课程,增强学生工程经济方面的知识水平和经济全球一体化的的应对意识和能力

 (3)同节能环保,安全,可靠性方面的交叉:在该方向拟开设油气管道节能工艺技术、油气管道安全工程、油气管道风险评价与完整性管理等选修课程,培养学生安全、环保、节能管理和设计的能力,以满足建设节约型社会的人才需要。

 通过这一系列课程的设置,在专业通用技术模块中将构成以必修课程为主,三个交叉子模块为辅的完整结构。学生可根据自身兴趣和发展方向,选择相应交叉子模块中的选修课程,以扩展自身的知识面,体现“厚基础”的指导思想。

 2、油品输送和储存技术模块

 在该模块中以油品输送和储存这一大系统为主链条,以输油管道设计与管理、油田集输工程、油库设计与管理为核心课程,构建完整统一的油品输送和储存技术课程群。在该模块中,为坚持江苏工业学院油气储运学科以炼厂油品及成品油的储存和运输技术为特色,继续开设炼厂管线设计、液化气站与加油站设计、油气回收与环保技术等选修课程,以适应炼化和销售企业的用人需要。

 3、天然气输送和储存技术模块

 (1)在该模块中以天然气输送和储存这一大系统为主链条,以输气管道设计与管理、气田集输工程、燃气输配为核心课程,构建完整统一的天然气输送和储存技术课程群。并根据天然气输送和储存技术的新发展和新动向,开设天然气水合物、天然气管道减阻内涂技术、液化天然气技术、地下储气库设计与管理、CNG加气站设计与管理等选修课程。

 (2)按照天然气从产出到用户需经过矿场集输处理系统、干线输送系统、城市终端配送和储存系统这样一个完整、连续并相互影响的工艺流程,将输气管道设计与管理、气田集输工程、燃气输配三门课程整合成天然气管路输送一门课程,避免以前三门课程中部分内容的重复,并从大系统观的角度来加以讲授,使学生既了解三个子系统的区别,又了解了它们之间的联系和相互影响性,形成大工程观的概念。

 (3)为适应天然气工业和天然气管道运输业的展,我们需适当加大天然气输送和储存技术课程模块的建设,除了完善天然气输送和储存技术的理论课程结构外,还需在实验、课程设计及毕业设计、实习三个方面加以建设。

 ①实验建设:在江苏工业学院原有油气储运省重点技术实验室的基础上,集中力量建设燃气储运实验平台和储运安全与防护系统,打造由燃气储运实验平台、油品储运实验平台和储运安全与防护系统三大平台为主体的江、浙、沪地区乃至国内先进的油气储运综合工程实验中心。逐步开设天然气输送、燃气物性测试、天然气水合物机理研究等相关实验,形成天然气输送和储存技术理论讲授和实验相结合的教学模式。

 ②课程设计和毕业设计建设:江苏工业学院油气储运工程专业原有的课程设计和毕业设计都偏重于油品输送和储存方向,天然气方向的课程设计和毕业设计较为薄弱,因此在天然气管路输送大课程的基础上,拟增设天然气集输、干线输气管道、城市燃气输配三个方向的课程设计题目,学生可任选一个方向进行课程设计。对于毕业设计,应增加天然气方向的毕业设计选题,为学生提供与工程实际结合,技术先进、难度适中的天然气方向的课题,使毕业设计选题更加多样化,体现专业方向和特色。

 ③实习基地建设:针对原有的实习基地主要以让学生了解炼油厂生产工艺流程、炼厂油品装卸工艺流程、油库工艺流程,炼厂和油库常用设备为主,实习基地类型较单一,缺少较大型的天然气输配技术实习基地的现状,我们需紧抓西气东输管网在长江三角洲大力发展的大好机遇和“十五规划”中的五大储气库之一——东南储气库将建在江苏工业学院所在地—常州金坛这一良好条件,积极联系和沟通相关企业,力争西气东输常州分输站、金坛储气库,西气东输管线上海终控中心等单位能成为本专业的实习基地,以完善本专业的实习基地类型,加强学生对天然气输送和储存工艺的实践认知。

 本文的内容只是对油气储运工程专业课程设置改革的一点探讨,起到抛砖引玉的作用,希望能对油气储运工程学科建设有所贡献。

 参考文献:

 [1]严大凡。油气储运专业回顾与展望[J]。油气储运,2003,22(9):1—3

 [2]姚安林。我国油气储运学科的发展机遇[J]。油气储运,1999,18(2):6—10

 [3]张光明,汪崎生。石油工程专业课程体系及教学内容改革与实践[J]。江汉石油学院学报(社科版),2001,3(1):33—36

 油气储运工程就业方向分析

 油气储运工程专业是研究油气和城市燃气储存、运输及管理的一门交叉性高新技术学科,是石油和天然气工业的主干专业。

 1、油气储运工程专业研究方向

 该专业所包含的研究方向有:01油气长距离管输技术02多相管流及油气田集输技术03油气储运与城市输配系统工程04油气储存与液化天然气技术05油气储运安全工程。

 2、油气储运工程专业培养目标

 本专业培养研究生具备油气集输、油气管输、油气储存、油气储运工程施工与管理、城市配气等方面知识,获得油气储运工程师的基本训练。具有较宽广坚实的专业理论基础,掌握较系统深入的油气储运工程技术知识,了解国际上有关领域的新动态,能正确地运用所学知识解决工程技术问题,具备独立开展专业技术工作和从事相关科学研究的能力,并具有继续学习、创新和提高的能力。具有较强的外语应用能力,能熟练运用一种主要外语阅读本学科的文献资料、撰写专业论文,具有较好的听说能力。

 3、油气储运工程专业就业方向

 本专业毕业生主要在油气田企业、油气管道的规划设计、建设、运营管理单位、石油化工企业、石油销售企业、城市燃气公司、建筑公司、部队和民航的油料公司、设计院以及国家物资储备部门等领域从事工程规划、勘测设计、施工、监督与管理、科学研究与技术开发工作以及油气储运设备运营等方面的技术管理、研究开发等工作。

;

油气智能开技术专业怎么样_就业方向_主要学什么

沙志彬 梁金强 王力峰 匡增桂

(广州海洋地质调查局 广州 510760)

基金项目:国土部公益性行业科研专项项目(编号:200811014)、国家高技术研究发展课题(编号:2009AA09A202)和国家重点基础研究发展(3)(编号:2009CB219502-1)资助。

第一作者简介:沙志彬(12.4—),男,教授级高工,主要从事石油地质和天然气水合物的研究。

摘要 天然气水合物是一种新型能源,形成水合物的天然气主要是来自于下部生烃源岩,当天然气在向上溢出的过程中遇到温度、压力和地层物性合适的区域便形成了天然气水合物矿藏。但天然气又是靠什么路径运移到储层的呢?经过研究,认定研究区的天然气主要是利用气烟囱进行运移的。而气烟囱识别分析技术就是利用研究区三维地震信息,通过对地震剖面的分析以及神经网络的运算,对天然气运移形式进行描述,直观地展示天然气运移通道及赋存情况,通过垂向上和平面上的气烟囱效应来预测水合物的发育带,并将形成水合物富集所需要的天然气源岩进行初步评估。然后在平面上展示出天然气运移分布范围和天然气水合物矿藏的成藏范围,从而为进一步研究水合物的形成、存储提供依据,并可为水合物勘探中的井位部署提供参考。

关键词 气烟囱天然气水合物 研究应用

1 气烟囱的概念

在石油地质学中,“气烟囱”(Gas Chim ney)是一个崭新的概念,“气烟囱”一经形成,就可作为后期油气或热流体不可忽视的通道,揭示油气的发育地点及运移到一个储层,以及如何从储层溢出,产生浅层油气。可见“气烟囱”对油气运移与聚集会产生重要影响,是大中型油气田存在的重要标志之一[1~2]。

从地质成因角度来说,气烟囱是由活动热流体作用形成的一种特殊的伴生构造,这种伴生构造曾经是热流体(气、液)的泄压通道,不仅形似烟囱,且具烟囱效应。其静态形状上似裂隙、裂缝,而在动态变化上表现为增压破裂—泄压闭合—增压破裂这种旋回性“幕式”张合特征[2]。从地震表现角度来说,气烟囱则可定义为在品质非常好的常规地震剖面上,某些部位反射波突然出现杂乱反射、振幅大幅度减弱(偶尔为强振幅)的这种柱状、椭圆状或锥形体地震模糊带,并且核部低速,据此可识别气体渗漏的位置和展布情况[3]。

地震剖面上所揭示的气烟囱是流体垂向活动的直接证据。在地震剖面上造成反射模糊带,甚至空白区,其原因是气层低速异常和反射屏蔽的影响,使反射波信噪比大幅度降低。对于地震剖面上弱振幅、低连续性的特征,其原因可能为天然气从储层沿着构造薄弱带向上运移,当运移比较剧烈时可能破坏地层原始沉积层理,同时地层中含有天然气会大量吸收地震能量[4]。

2 气烟囱与天然气水合物成藏的关系

天然气水合物是一种新型能源,其成藏条件比较特殊,主要形成于300m深的海底以下100~400m之间的地层中,是以层状、块状、团状等形式富集,主要是充填在海底沉积物的空隙和裂缝中,形成水合物的天然气主要是来自于下部源岩生烃后运移到合适的地层富集成藏的[5~6]。但天然气又是靠什么路径运移到储层的呢?经过对地震剖面的分析以及神经网络的运算,认定研究区的天然气主要是利用气烟囱进行运移的(图1)。当天然气在向上溢出的过程中遇到温度、压力和地层物性合适的区域便形成了天然气水合物矿藏[7~8]。因此,可以利用气烟囱识别技术预测天然气水合物分布范围[9]。同时,气烟囱在形成过程中携带大量富含甲烷气的流体向上运移到天然气水合物稳定带,形成之后仍可作为后期活动的油气向上运移的特殊通道[10]。此外,运用地震识别出的似海底反射(BSR)来识别气烟囱构造,通过速度、泥岩含量、流体势等属性参数及钻井资料,还可以判断该烟囱构造的类型[11~12]。

图1 烃类的运移、聚集特征示意图Fig.1 Illu st ration of hydrocarbon migration and accum ulation

至于水合物形成的地质模式,目前主要有两种观点:一种是原先的因温度或 孔隙压力变化而转变为水合物;另外一种是微生物成因气或热成因气从下部运移至水合物稳定带而形成水合物。前一种情况下,水合物形成的重要原因不是外来物质的供给,而是原先天然气藏系统内的变化,水合物呈分散状存在于岩石中或者与已存在的气藏共生[3]。而后一种情况,由于天然气丰度不断增加,当天然气在向上溢出的过程中遇到温度、压力和地层物性合适的区域便导致水合物生成、积聚。当沉积层中的水合物充填程度越来越高时,沉积层变得不透水不透气,并在水合物稳定带之下形成常规气藏[4]。

深部形成的烃类气体一旦形成,就出现在运移和聚集的动态过程中。在粘土、粉砂质粘土等低渗透性沉积物中,一般发生垂直向上的运移;在高渗透性的砂质沉积物,或者裂隙发育的岩层中,深部来源的烃类气体大多沿地层上倾方向运移[2~3]。在深部构造发育的区块,对于热解气以及深部运移气体形成的水合物而言,有利于气体进入水合物稳定域的运移通道是控制水合物形成和分布的关键因素[13~14]。

因此,认为气烟囱与天然气水合物成藏的关系体现如下:

1)气烟囱以流体运移为主要特征;

2)气烟囱是天然气垂向运移的有效途径;

3)气烟囱构造为天然气聚集形成水合物提供有利圈闭条件[15~16]。

3 气烟囱识别分析技术的研发及应用

3.1 地质模拟与工作流程

在气烟囱体中地震响应的垂直扰动得到加强,这些扰动常常与油气的垂直运移通道有关,通过对世界范围内许多处理的地震气烟囱的推断已经证明气烟囱在油源评价、运移、储存、(断层)封堵性以及溢出点都非常有用[2、4],其成因机理模型如图2、图3和图4。从以上三个图中可以看出,图2气烟囱发育较弱,油气藏以油层为主,含气较少,且断层跟油气藏没有直接连通,油气封盖条件较好,因此油气逸散量较小,在油气藏上覆地层气烟囱效应较弱,所以该类油气藏总体保存条件较好;图3气烟囱发育明显,油气藏富集,封盖条件较好,但下部气层较厚,含气层具有较大的流体压力,因此上部盖层的封盖压力不足以完全对气层形成封盖,因此具有较明显的气烟囱效应,所以该类油气藏总体保存条件一般;图4气烟囱发育明显,由于有断层跟上、下部油气层直接连通,且断层封堵性较差,油气储存条件被破坏,造成油气大量逸散,因此具有明显的气烟囱效应,所以该类油气藏总体保存条件较差。

在技术上对气烟囱体的预测研究主要是所谓的“地震气烟囱处理技术”,即运用多层非线性神经网络技术对未知地震区块进行预测。为实现地震资料自动化的地质解释,其中心环节是通常所说的模式识别,即建立地震资料气烟囱特征参数(如相似性)与气烟囱地质目标之间的关系[3]。

图2 地质发育配置关系较好Fig.2 Good geological arrangement

图3 地质发育配置关系一般Fig.3 Ordinary geological arrangement

图4 地质发育配置关系较差Fig.4 Bad geological arrangement

为了实现气烟囱体的计算,用荷兰DGB地球科技公司与挪威国家石油公司共同开发的地震属性处理与模式识别软件Opend-Tect。O pend-Tect在强化细微的地震特征信息的基础上,分析这些反映不同地质沉积信息的空间分布,把多种地震数据体的信息综合到一起以得到目标体的最佳图像。并且O pend-Tect用神经网络、数学逻辑运算对多个属性体处理,得到直接反映地下地质特征的新属性。O pend-Tect的核心步骤是倾角控制(Steer-ing),它在其所有的运算和处理过程中起着举足轻重的作用,是后续神经网络运算的前提和基础。以下就是我们应用O pend-Tect计算气烟囱体的工作流程(图5)。

图5 预测气烟囱体技术流程图Fig.5 Flow chart of gas chimney predication

3.2 气烟囱体计算的数据准备

为了更准确地识别气烟囱体,我们需要对原始的地震数据做中值倾角滤波,以减少处理时产生的随机扰动,使预测出的结果更加真实可靠。

O pend-Tect核心技术之一是在提取属性和对数据滤波时考虑了所探测的地质体的方向及空间展布。当地质体的方向已知时,方向性原理容易被应用,例如在地震气烟囱或直接碳烃检测中,很多目标体无固定方向,但是它在各个方向倾斜。在这种情况下,在一定范围的倾斜时窗中提取属性比在固定时窗中更有利。因此,需要知道局部倾角及每个样点处的方位角。

O pend-Tect提供了3种计算倾角及方位的方法,计算结果被称为“定向体”,也就是每一个样点处都带有倾角和方位角信息的数据体。用倾角定向对地震数据做倾角定向滤波,改善同相轴的横向连续性,减少随机扰动。该滤波的主要特点是无滤波尾巴。

中值倾角滤波是一个数据驱动工具并产生一个整理过的数据体。在该数据体中,连续相位被加强并且随机分布的噪音被压制。滤波增加了地震数据输出的可解释性,提高了水平层自动追踪的可执行性。滤波基本上搜集了我们定义圆域内的所有属性并在中心用振幅中值替换了原有值,搜索区域遵循控制体内的倾角而定(图6)。

图6 中值倾角滤波原理Fig.6 Median dip filtration principle

综合控制体的滤波工作流程如下:

1)定义搜索半径;

2)从开始位置提取首个振幅;

3)沿着倾角和方位角通向下一道;

4)在该点提取内插值振幅;

5)在搜索半径内对所有道重复第3、4步操作;

6)用所有提取振幅的中值来替换起始位置振幅;

7)对体内所有样本重复操作第2~6步。

4道半径的滤波输入包含57个点。注意该圆不是平坦的也不是水平的,但是从一道到另一道是符合地震相位的。

中值应该定义成一系列中心点位置相关的值。因此,如果从最小到最大列出N个振幅,就可以取(N+1)/2处的位置值作为中值,这里的N是一个奇数。要理解一个中值滤波的效果,可设已经用了3个点的中值滤波来过虑一个地震相位。滤波过程由下面给出:

……0,0,1,0,0,1,1,3,0,1,1……

3点中值过滤响应由下面给出:

……0,0,0,0,0,1,1,1,1,1,1,1,1……

要检查这个,取3个相邻输入号码,排列并输出中间的值,然后改变输入组的一个位置并重复的练习。

请注意:

1)短于半个滤波的相位被清除(例如左侧1右侧0);

2)噪音也被清除(值3);

3)边界保留(主要的0带和主要的1带的间隙完全同一个位置,就是说无滤波导入)。

3.3 提取样本位置

图形窗口中提取烟囱体和非烟囱体。我们建议开始时做一些不同时间的相似性切片,这样可以在不同的时间尺度上初步判断气烟囱体的分布和走向特征。

在一个可能的烟囱体位置上显示一个或者是更多的属性来检查烟囱体单属性下如何显现,通过不同的属性对比来突出气烟囱体,以利于后续的拾取训练点。

做完这些工作以后,我们已经准备好拾取烟囱体和非烟囱体了。要求第一步产生两种不同的拾取组:一个是烟囱体,一个是非烟囱体,使用子目录中右击上栏菜单来实现,键入想创建的拾取组的名字,例如“烟囱体……是”并开始提取。在子目录中点击数据元素来移动元素到另一个位置并重复处理,重复这个练习直到取出了所需的所有样本点。

现在拾取非烟囱体点,并分别保存到不同的拾取组团(图7)。拾取样本位置是这个处理的关键步骤。应该取向于创建最有代表性的为烟囱体或非烟囱体拾取组。如果数据中有多个烟囱体,不要仅取于一个,试着在尽可能宽范围的时间域内把这些都拾取。

图7 神经网络训练组(绿色点表示气烟囱,蓝点表示非气烟囱)Fig.7 Neural network training(green dot:gas chimney,blue dot:not gas chimney)

3.4 神经网络及其算法

1)人工神经网络是模拟生物神经信息处理方法的新型计算机系统,它可以模拟人脑的一些基本特征(如自适应性,自组织性和容错性),是一个并行、分布处理结构,它由处理单元及其称为联接的无向信号通道互连而成。人工神经网络力图模仿生物神经系统,通过接受外部输入的刺激,不断获得并积累知识,进而具有一定的判断预测能力。

2)BP神经网络算法

BP网络算法的思想是把一组样本的I/O问题变为一个非线性优化问题,使用了优化中最普通的梯度下降法,用迭代运算求解权对应于学习记忆问题,加入隐含层节点使优化问题的可调参数增加,从而可得到更精确的解。BP网络模型设计的最大特点是网络权值是通过使用网络模型输出值与已知的样本值之间的误差平方和达到期望值而不断调整出来的,并且确定BP神经网络评价模型时涉及隐含层节点数、转移函数、学习参数和网络模型的最后选定等问题。

3.5 神经网络训练

首先在O pend-Tect里面创建一个新的神经网络,并选择想使用的属性(通常是全部)和包含了烟囱体和非烟囱体的拾取组团,一般说来不是所有位置都用来训练网络,但是一定比例的(10,10,20)样本是用来避免过度适配网络,神经网络将在我们声明的位置提取属性,它将随机分配数据到训练和测试组,并且启动训练状态。训练执行情况在训练期间被追踪(图8),并用两种指数来表示。RMS错误值曲线表示训练组和测试组的总的错误,分别从1(最大错误)到0(最小错误)两个曲线在训练间都应走低,当测试曲线再次走高表示网络过度适配。训练应在这发生之前适可而止。典型的一个RMS值在0.8范围内被认为是合理,0.8~0.6是好,0.6~0.4是很好,低于0.4为极好。

图8 神经网络训练监管窗口Fig.8 Monitoring window for Neural network training

最后将发现网络节点会在训练中变色。颜色暗示了在分类里面每个节点(每个输入属性)的重要程度,颜色从红(最重要)经黄到白(最不重要)过度训练。当一个网络从训练组中识别单个样本时会发生过度适配(overfitting)网络会在训练组中表现得更优,但是会在测试组中表现变差。当在训练组上的表现达到最大(最小错误)最优化结果的网络训练会停止,停止的点可以从神经网络训练窗口中的执行图表里查看。满意后,接下来把训练的网络推广到整个数据体。这个在“产生体”模块中操作完成。如果不想处理整个数据体,也可以限制输出范围来产生一个小数据体。为加快速度,可以在联机处理模式下在多台机器上运行工作,O pend-Tect会在声明的机器上分配数据并在处理结束时合成输出结果。

3.6 气烟囱技术在研究区的应用

通过研究区的气烟囱处理效果分析来看,研究区的气烟囱较为发育,作为一种油气运移的通道控制着整个研究区天然气水合物的分布和储量。从研究区LineA线的气烟囱效果图可以看出(图9),烟囱现象主要是发育在BSR下部,发育BSR的背斜处的下部存在明显的气烟囱现象,为天然气水合物的成藏提供足够的气源,证明此处的储层主要是利用气烟囱这种运移方式富集天然气的;从图中还可以看出气烟囱在1650ms以下的地层中发育,从侧面说明在神狐区域源岩生成的天然气被很好地保存在地层中,并在有利位置成藏。对析沿BSR±50ms时窗提取气烟囱平面效果图来看(图10),气烟囱在BSR以下发育充分,而在BSR以上则没有明显的显示,说明研究区的气体是沿着下部源岩向上运移的,烟囱效应是由下部到上部是逐渐减少的。由此可以初步认为,流体在运移过程中在有利区域发生富集,也就是在BSR附近存在并富集。

图9 Line A线气烟囱显示Fig.9 Display of gas chimney in Line A

图10 沿BSR±50ms时窗提取气烟囱平面效果图Fig.10 P lane slices at BSR±50ms derived from gas chimney identification technique

气烟囱在形成过程中携带大量富含天然气的流体向上运移到天然气水合物稳定带,其形成之后仍可作为后期活动的油气向上运移的特殊通道。通过平面和剖面结合分析,可以对天然气运移分布范围进行检测,对水合物的成藏范围进行圈定。

4 认识与讨论

利用DG B公司Opend-Tect软件气烟囱技术,通过对地震剖面的分析以及神经网络的运算,对天然气运移形式进行预测,直观地展示天然气运移通道及赋存情况,通过垂向上和平面上的气烟囱效应来预测水合物的发育带,并将形成水合物富集所需要的天然气源岩进行初步预测。然后在平面上展示出天然气运移分布范围和天然气水合物矿藏的成藏范围,从而为进一步研究天然气水合物的形成、存储提供依据,并为天然气水合物勘探中的井位部署提供参考。因此,气烟囱识别分析技术可以应用于天然气水合物矿藏的勘探与评价当中。总结本文得出以下几点认识与讨论:

1)研究区的气烟囱较为发育,作为一种油气运移的通道控制着整个研究区天然气水合物的分布和储量;

2)气烟囱现象主要是发育在BSR下部,气烟囱体为天然气水合物的成藏提供足够的气源,同时天然气被很好地保存在地层中,并在有利位置成藏;

3)气烟囱在BSR以下发育充分,而在BSR 以上则没有明显的显示,说明烟囱效应是由下部到上部是逐渐减少的,认为流体在运移过程中在有利区域发生富集,也就是在BSR附近存在并富集。

4)通过平面和剖面结合分析,可以对天然气运移分布范围进行检测,对天然气水合物的成藏范围进行圈定,为井位部署提供参考。

参考文献

[1]张为民,李继亮,钟嘉猷等.气烟囱的行程机理及其与油气的关系探讨.地质科学,2000,35(4):449~455

[2]张树林,田世澄,朱芳冰.莺歌海盆地底辟构造的成因及石油地质意义.中国海上油气,1996,10(1):1~6

[3]Marcello Simoncelli,HUANG Zu-xi,柴达木盆地应用叠前偏移技术消除“气烟囱”效应.石油勘探与开发,2003,30(2):115~118

[4]解习农,刘晓峰,赵士宝等.异常压力环境下流体活动及其油气运移主通道分析.地球科学,2004,29(5):589~595

[5]张光学,黄永样,陈邦彦等.海域天然气水合物地震学[M].北京:海洋出版社,2003

[6]马在田,耿建华,董良国等.海洋天然气水合物的地震识别方法研究.海洋地质与第四纪地质,2002,1:1~8

[7]梁全胜,刘震,王德杰等.“气烟囱“与油气勘探.新疆石油地质,2006,27(3):288~290

[8]刘殊,范菊芬,曲国胜等.气烟囱效应——礁滩相岩性气藏的典型地震响应特征.天然气工业,2006,26(11):52~56

[9]EckerC,Dvorkin J,NurA M.Estimatingthe amount of gas hydrate and free gasfrom marine seismic data[J].Geophys.ics,2000,65,565~573

[10]Wood WT,Stofa P L,Shipley TH.Quantitative detection of methane hydrate through high-resolution seismic velocity analysis[J].J.Geophys.Res.,1994,99,9681~9695

[11]Sloan E D.Clathrate Hydrates of Natural Gas.Marcel Dekker,New York,1990

[12]Miller JJ,MyungW L,vonHueneR.An analysis of a reflectionfromthe base of a gas hydrate zone of Peru[J].Am.Assoc.Pet.Geol.Bull.,1991,75,910~924

[13]Hyndman R D,Foucher J P,Yamano M,et al.Deep sea bottom-simulating-reflector:calibration ofthe base of the hydrate stability field as used for heat flow estimates.Earth and Planetary Science Letter,1992,109,289~301

[14]Hyndman R D,Dis E E.Amechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion.J.Geophys.Res.,B,Solid Earth and Planets,1992,(5):7025~7041

[15]梁全胜,刘震,常迈等.柴达木盆地三湖地区第四系气藏形成与“烟囱效应”.新疆石油地质,2006,27(2):156~159

[16]王秀娟,吴时国,董冬冬等.琼东南盆地气烟囱构造特点及其与天然气水合物的关系.海洋地质与第四纪地质,2008,28(3):103~108

Application of Gas Chim ney Identification Technique to Study of the Gas Hydrates

Sha Zhibin,Liang Jinqiang,Wang Lifeng,Kuang Zenggui(Guangzhou Marine Geological Survey,Guangzhou,510760)

Abstract:Gas hydrates are expected to be a new type of energy source in the future.The forming gases coming from the source rocks underneath can be converted to gas hydrates along the ascending paths where the environment parameters,such as temperature,pressure and geological properties,for the form ation of gas hydrates.So what about the ascending paths?We believed that gas chimney contributes to the cause of ascending mostly.Byseismic profiles analysis and neural network calculation,gas chim ney identification technique makes use of 3-D seismic inform ation data and attribute to describe the gases migrating m odel,display the ascending paths,predict gas hydrates accum ulation and preliminarily evaluate source rocks shown in the 3-D space.The processed results can also be dem onstrated on the base map to mark out gases scope and gas hydrates scope respectively for the evidence of gas hydrates formation and accumulation,and further more provide the meaningful references to borehole dispositions of gas hydrates field exploration.

Key words:Gas chim ney;Gas hydrates;Study;Application

奥陶系风化壳产层天然气的来源分析

高考 填报志愿 时,油气智能开技术 专业怎么样 、 就业方向 有哪些、主要学什么是广大考生和家长朋友们十分关心的问题,以下是相关介绍,希望对大家有所帮助。

1、培养目标

本专业培养德智体美劳全面发展,掌握扎实的科学文化基础和油气开设备仪表应用、油气智能开与安全生产管理及相关法律法规等知识,具备油气水井站操作维护、智能管理、生产分析等能力,具有工匠精神和信息素养,能够从事石油开、天然气开、井下作业、城市燃气输配和技术管理等 工作 的高素质技术技能人才。

2、 就业 方向

面向石油和天然气开与储运人员、石油天然气开工程技术人员等职业,石油开、天然气开、城市燃气输配等岗位(群)。

3、主要专业能力要求

具有满足石油天然气开领域数字化发展需求的数字技术和信息技术的应用能力;

具有(远程)巡井、巡站,以及对各类油气水井、站进行智能管理的能力;

具有对智能油、气、注入、燃气输配仪器仪表等进行应用和管理的能力;

具有单井、井组动态分析,以及对区块的生产动态进行预测的能力;

具有对各种提高收率技术所涉及的井、站进行智能管理的能力;

具有进行检泵、小修、大修等作业,以及编写井下作业施工报告的能力;

具有进行绿色生产、环境保护、安全防护和质量管理的能力;

具有良好的 语言 与文字表达能力,以及较强的沟通与合作能力;

具有探究 学习 、终身学习和可持续发展的能力。

4、主要专业课程与 实习 实训

专业基础课程:Python 程序设计、油气藏开发地质、钻井概论、机械制图、石油仪表及自动化、油层物理、油气田数字化管理。

专业核心课程:油水井智能管理、井站智能管理、气井站智能管理、油水井智能测试、井下作业、提高石油收率、油气藏动态分析。

实习实训:对接真实职业场景或工作情境,在校内外进行油工技能训练、气工技能训练、井下作业工技能训练等实训。在石油、天然气开以及井下作业等校企合作企业或实训基地等单位或场所进行岗位实习。

5、接续专业举例

接续高职本科专业举例:石油工程技术

接续普通本科专业举例:石油工程

鄂尔多斯盆地中部气田是我国最大的气田之一,其主要产层为奥陶系风化壳产层,其次为石炭—二叠系产层。其中石炭—二叠系产层中天然气主要为煤成气,这一点已得到共识,但对于奥陶系风化壳产层天然气的气源问题仍未取得一致的认识。许多学者已在这方面做了大量的研究工作,多数认为其属上古生界煤成气和下古生界油型气的两源混合气(杨俊杰等,1991,1992;曾少华,1991;孙冬敏等,19),但对于以哪一种气源为主力气源尚存在较大争论,主要有以下两种代表性观点。一种是以关德师等(1993)、戴金星等(1987,1999)、张士亚(1994)、张文正等(19)、夏新宇等(1998,2000)为代表,认为中部气田奥陶系产层的天然气主要是石炭—二叠系煤系烃源岩的产物,以上古生界煤成气为主;另一种是以陈安定(1994,2000)、黄第藩等(1996)、徐永昌等(1994)、郝石生等(1996)、蒋助生等(1999)为代表,认为中部气田奥陶系产层的天然气主要是下古生界奥陶系海相碳酸盐岩的产物,主要为自生自储的油型气。所以弄清中部气田奥陶系风化壳产层的天然气来源意义重大,直接关系到对气田成藏模式的认识以及油气评价、勘探部署。

笔者在前人大量研究工作的基础上,参考已有的天然气成因类型划分方案(郜建军等,1987;张义纲,1991;张士亚等,1994;戴金星等,1992,1999;徐永昌等,1994,1998;黄藉中,1991;冯福闿等,1995),结合中部气田天然气实际资料,得出鄂尔多斯盆地中部气田天然气划分标准(表5-8)。

(一)应用天然气组分的碳、氢同位素判别气源

1.用δ13C1和δ13C2相结合探讨气源

就沉积有机质热解成因天然气来说,其δ13C1值主要与成气母质类型和热演化程度有关,随母质类型变好而减少,随成熟度增高而增大。δ13C2值则主要与母质类型有关。源于腐殖型母质的煤成气,富集碳的重同位素而δ13C值偏大,而源于腐泥型母质的油型气δ13C值偏小。据此,许多学者都提出过一些大体一致的划分油型气和煤成气的指标界限(戴金星等,1992;徐永昌等,1994;张士亚等,1994;黄藉中,1991;张义刚,1991)。一般以δ13C2的界限值-29‰~-27‰为这两种类型天然气的分界。而δ13C1值:对油型气δ13C1>-55‰,一般为-50‰~-35‰;对煤成气δ13C1>-42‰,一般-38‰~-28‰。但是,由于δ13C1值随成熟度增高而增大,因此成熟度相对较低的煤成气与成熟度相对较高的油型气在δ13C1值域分布上的叠合现象是常见的,并往往造成判识上的困难和失误。这说明在天然气成因分类研究时,用δ13C1和δ13C2相结合的方法才是合理的、有效的(戴金星等,1992;徐永昌等,1994;黄第藩等,1996)。同时,甲烷是天然气中最主要的占绝对优势的组分,特别对高—过成熟气(干燥系数在0.95以上),那种仅用δ13C2以上重烃气进行成因分类和混源问题研究的方法(陈安定,1994),无疑降低了结果的置信度。

表5-8 鄂尔多斯盆地中部气田天然气划分标准

图5-10是根据甲烷、乙烷碳同位素判别天然气成因类型的δ13C1—δ13C2类型图,该图主要以甲烷碳同位素判别气的演化程度,而主要以乙烷碳同位素判别成气的母质类型。图中δ13C2<-30‰区域是比较典型的油型气分布区,δ13C2>-28‰是比较典型的煤成气分布区,而δ13C2=—30‰~—28‰之间的气有一定的混合作用或来自混合型母质。不难看出,盆地东、西部C—P气样主要落入煤成气区域, 气样主要落入油型气区域,中部气田 气样既有落入油型气区域,又有落入煤成气区域,还有落入两者的混合气区。

2.用δ13C1结合(δ13C2—δ13C1)分析气源

(δ13C2—δ13C1)值是一项与成熟度有关的参数,具有随成熟度增高其差值变小的特点(黄藉中,1991;陈安定,1994;黄第藩等,1996)。在成熟度相对较低的高成熟演化阶段(Ro=1.3%~2.0%)的早期,该值一般在12‰左右,而在过成熟阶段后期发生倒转,出现负值。因此,把它与δ13C1或δ13C2结合起来作图时,将能更好地揭示出不同成熟度天然气点群之间或不同δ13C1或δ13C2点群之间的成因联系和差别。如图5-11和图5-12所示,煤成气以盆地东、西部的C—P气为主,部分中部气田的 气;油型气以中部气田的 气为代表,还有部分中部气田的 气;两者混合气主要是中部气田 气。

图5-10 鄂尔多斯盆地古生界天然气的δ13C1和δ13C2关系图

图5-11 鄂尔多斯盆地古生界天然气的δ13C1和(δ13C2-δ13C1)的关系图(图例同图5-10)

图5-12 鄂尔多斯盆地古生界天然气的δ13C2和(δ13C2-δ13C1)的关系图(图例同图5-10)

3.用δ13C2与C2H6含量、δ13C3关系分析气源

近年来,一些研究者(郜建军等,1987;陈安定等,1994;黄藉中等,1991;冯福闿等,1995)强调了乙烷、丙烷碳同位素在区分两种不同母质热成因气(高演化海相腐泥型气与陆相煤系气)中的作用。表5-9列出了国内外若干有代表性的高演化海相腐泥型气与陆相煤系气的各组分碳同位素资料。可以看出:

(1)对处于低演化阶段的海相腐泥型气来说,其甲烷碳同位素一般小于-40‰,而煤系气一般大于-40‰,区分效果较好。但当C1/Cn>0.95即变为干气,尤其当此值达到0.96以上时,海相腐泥型气的δ13C1普遍升高至-32‰~-33‰,变得与煤系气不易区分。

(2)乙烷碳同位素在这两者之间所表现出的特征却是稳定和区分明朗。对海相腐泥型气来说,尽管其热演化程度很高(如四川盆地威远气田震旦系气的源岩Ro高达3.5%左右,气的δ13C2平均值为-31.9‰),而煤系气的热演化程度不管多低,两者之间一直存在一条基本上不可越的界线:δ13C2=-29‰。并且,随乙烷含量减少,即热演化程度增加,乙烷碳同位素之间的差异明显增大,这为用δ13C2为主判别高演化两种热成因气提供了可靠依据。

(3)丙烷碳同位素与乙烷碳同位素具相似属性——稳定而区分明朗。一般认为,煤成气δ13C3应大于-26‰,油型气δ13C3小于-28‰,δ13C3在-28‰~-26‰之间,煤成气和油型气难以准确鉴别。陈安定等(1993)研究认为,鄂尔多斯盆地中部气田油型气的δ13C3/δ13C2一般在0.9左右,两者差值较大;煤成气的该比值一般在0.95左右,两者差值较小。

表5-9 国内外已知海相腐泥型气与陆相煤系气的组分碳同位素分布平均值

图5-13、图5-14分别是鄂尔多斯盆地天然气的δ13C2与C2H6含量、δ13C2与δ13C3关系图。不难看出,盆地东、西部的C—P产层天然气主要为煤成气,中部气田O1m5产层天然气既有油型气,又有煤成气,还有两者的混源成因气。图中联结于两区之间的一个带显示出随C2H6含量减少,δ13C2值逐渐偏负的相关关系,违背了热演化规律,这是一种反常现象,混合才可能是唯一的解释。

从δ13C2与C2H6含量关系图(图5-13)中可见,鄂尔多斯盆地中部气田绝大多数 气样和近半数的 气样落在油型气区域,绝大部分C—P气样和少数 气样及个别 气样落在煤成气区域,另半数 气样和少数C—P气样组成一个带联结于两区之间,属两者的混合气。

图5-13 鄂尔多斯盆地古生界天然气的δ13C2和乙烷含量的关系图(图例同图5-10)

图5-14 鄂尔多斯盆地古生界天然气的δ13C2和δ13C3的关系图(图例同图5-10)

由δ13C2与δ13C3关系图(图5-14)可知,鄂尔多斯盆地中部气田 绝大多数气样落入油型气区域,C—P大部分气样和部分 气样落入煤成气区域,部分 气样和少数C—P气样、 气样落入混合气,这与用C2H6含量与δ13C2图的判别结果(图5-13)基本一致,所不同的只是煤成气比例有所增多,主要是过成熟气δ13C3偏重所致。

4.用δ13C1和δDCH4关系分析气源

从δ13C1—δDCH4的关系图(图5-15)可知,油型气主要以 为代表,部分 ,其δDCH4的分布窄且相对偏正,为-165‰±8‰;煤成气主要以C—P为代表,部分 气样,δDCH4的分布宽且相对偏负,为-175‰±20‰。

图5-15 鄂尔多斯盆地古生界天然气的δ13C1和δDCH4的关系图(图例同图5-10)

(二)气源岩/天然气的动态对比探讨气源

1.奥陶系灰岩在高演化阶段轻烃组成特征

为了研究高演化阶段奥陶系灰岩Ⅰ-Ⅱ型有机质生成的轻烃组成特征,将下古生界风化壳灰岩样在350℃和450℃温阶分别进行模拟观测其轻烃在热演化过程的组成特征,因为250℃热解产物可能反映的是岩石吸附和残余烃类,对于鄂尔多斯盆地风化壳灰岩来说吸附烃类是可能的,不代表其原始的烃类生成特征,只有在排出了吸附烃后(250℃),更高温度热解产物才能真正反映其生烃特征,另一方面,由于气源岩的排驱分馏效应,排出的链烷烃较多,这样岩石中残余的芳烃较多,因此在已发生过排烃的气源岩中,残余烃中芳烃高于对应天然气的芳烃含量,例如盐下的奥陶系灰岩样品,2069m奥陶系云灰岩350℃和450℃温度热解轻烃产物见图5-16,可看出随热演化程度增高热解产物中苯和甲苯含量逐渐增高的特点。

图5-16 鄂尔多斯盆地古生界天然气与气源岩不同阶段轻烃产物动态对比图

通过实验分析得出如下认识:①250℃轻烃反映的是岩石吸附和残余烃类,与350℃烃类组成差别较大,推断其可能是受到气体侵入吸附“污染”所致,不能代表其原始的烃类生成特征,因此,不能用风化壳灰岩吸附的烃类分布特征来作为气源对比依据;②灰岩中I型、Ⅱ型有机质随热演化程度增加,生成的烃产物同样具有苯和甲苯含量高的特征,鄂尔多斯盆地下古生界气源岩均处于高成熟—过成熟阶段,具有高苯和甲苯含量的天然气也有可能是下古生界气源岩来源的。

2.气源岩与天然气的轻烃组成动态对比

根据气源岩中轻烃的组成分布可以看出,奥陶系气源岩在高成熟阶段生成的轻烃产物中同样具有苯和甲苯含量高的特点,因此尽管林2井和陕6井奥陶系天然气中甲苯含量很高,但其仍然具有下古生界气源岩来源的可能性。天然气轻烃组成与下古生界气源岩热抽提物(反映残余或吸附烃类)也有差别(图5-16),因而有效的气源对比应该通过热模拟方法进行动态对比。也就是说,热模拟过程的产物可能真正反映气源岩的生烃特征。从图5-16中气—源岩轻烃组成对比可以看出,天然气中甲基环已烷和链烷烃含量也较高,这与上古生界煤岩组成有明显差别,与奥陶系灰岩组成也有差别,但其分布类似于2069m云灰岩在350℃和450℃的热模拟产物,其来源可能也与下古生界气源岩有关。

3.天然气轻烃组成平面分布特征

天然气轻烃组成与其成因密切相关。上古生界典型煤成气的轻烃组成主要有如下特征(李剑等,2001):①nC7、甲基环己烷和甲苯相对含量组成中,甲基环己烷含量最高,一般要高于60%;②甲苯含量较低,一般要低于15%。下古生界天然气的轻烃组成中甲基环己烷含量变化在35%~89%范围内,甲苯相对含量在25%~45%范围内,变化范围较大,说明下古生界风化壳的天然气来源比较复杂。

从本章第一节可知,平面分布上在鄂尔多斯盆地中部气田东部甲苯/甲基环己烷含量较高,一般超过0.5,有的甚至超过1.0(图5-3),对于苯/甲基环戊烷比值在平面上的分布情况类似于甲苯/甲基环己烷。据此可为鄂尔多斯盆地中部气田气源分析提供依据。

4.水溶气轻烃组成平面分布特征

在水溶气轻烃组成研究中最关心的可能是水中溶解的苯和甲苯含量多少及相对含量。由第四章第四节可知,鄂尔多斯盆地中部气田下古生界水溶气中苯和甲苯含量在平面上分布不均匀(图4-13)。总的来说,在中部气田的中东部具有相对较高的苯和甲苯含量,最高的可达1.16%和1.13%;而在中部气田的西部、北部及南部苯和甲苯含量较低,大多数井中苯和甲苯含量均低于0.1%,甚至缺乏,并且在水中溶解的主要是苯,而溶解的甲苯含量极低。这一方面反映了苯和甲苯在地层水中的溶解度不同,同时也反映了中部气田不同区块的天然气成因类型可能存在差异。

(三)气源综合对析

在上述研究的基础之上,根据下古生界天然气地球化学特征对鄂尔多斯盆地中东部不同部位天然气的成因进行了综合对析,各部位的划分情况如图5-17所示,将中部气田划分为4个区块分别进行气源对比。

表5-10列出了中部气田各区块天然气各项指标分布范围,为了便于对析,同时也列出了上古生界天然气和上、下古生界气源岩的相应指标数值范围。通过对析,鄂尔多斯盆地中部气田的天然气为混合来源已是不容否认的事实,只是在不同区块上、下古生界天然气混合程度不同而已。通过各项指标的综合分析,在中部气田的北部、西部和南部天然气主要以下古生界来源为主的混合气,而中部气田的东部则主要以上古生界来源为主的混合气。

中部气田的北部、西部和南部δ13C2值较低,一般分布在-33‰~-29‰之间,与上古生界天然气(δ13C2一般分布在-25‰~-22‰之间)差别很大,而与下古生界气源岩的热模拟产物δ13C2值(在-36.6‰~-32.0‰之间)较接近,甲苯/甲基环己烷比值在这三个区块均低于0.4,正己烷/甲基环戊烷一般小于1.0,三环萜烷/五环三萜烷比值相对较高,与下古生界气源岩比较接近,而与上古生界天然气之间差别较大,水溶气中的苯、甲苯含量在这三个区块均较低,40Ar/36Ar比值均较大,反映其与下古生界气源岩有更好的亲缘关系。

图5-17 鄂尔多斯盆地中东部下古生界天然气气源对比区块划分

表5-10 鄂尔多斯盆地中部气田气源综合对比表

中部气田的东部各项指标的分布与以上三个区块相反,δ13C2值分布在-28‰~-25‰之间,甲苯/甲基环己烷比值大于0.5,正己烷/甲基环戊烷比值分布在1.1~1.3之间,三环萜烷/五环三萜烷比值很低(仅为0.1),与上古生界气源岩和天然气比较接近,反映其可能主要与上古生界天然气来源有关。

(四)气源混合比计算

精确计算出天然气中各种成因类型混合比例是非常困难的,这主要表现在以下三个方面:一是计算混合比时的参数选择,二是端元值的确定,同一类型天然气端元值也有很大差别,三是无论是用哪种参数进行计算,只得出单井混合比,与中部气田的天然气混合比之间还存在一些误差。基于上述原因及本研究工作的程度有限,只对鄂尔多斯盆地中部气田的天然气混合区块进行了初评,选用的指标主要为乙烷,在端元值的选择时,下古生界来源气使用盆地南缘平凉组泥岩热模拟产物生气高峰期时的δ13C2值,为-34.7‰,上古生界来源气使用上古生界天然气δ13C2的平均值-25.1‰。计算公式如下:

鄂尔多斯盆地中部气田地层流体特征与天然气成藏

式中:nA,nB分别为上古生界天然气和下古生界天然气组分百分含量;X,1-X分别为上古生界天然气和下古生界天然气混合比;δ13C2(A),δ13C2(B)分别为上古生界和下古生界天然气碳同位素值。

利用上述公式,计算出鄂尔多斯盆地中部气田不同区块天然气混合比,如表5-11所示。

表5-11 鄂尔多斯盆地中部气田不同区块天然气混合比

从表5-11中可以看出,鄂尔多斯盆地中部气田的北部、西部、南部以下古生界天然气来源为主,约占60%~70%,上古生界天然气来源为辅,约占30%~40%,而中部气田的东部以上古生界天然气来源为主,约占70%,下古生界天然气来源为辅,约占30%。