1.天然气水合物热动力学模型

2.燃气的基本特性

3.燃气表超期,国家有哪些规定?

4.在管道中,多少MPa的压力为低压、中压、高压? 其定义的国家标准是什么?

天然气动态压力静态压力_天然气动态压力正常值是多少帕的呢

厦门宏控仪表整体结构设计合理,动态测量范围宽,压力损失小;仪表主体可用不锈钢材质制造,适用于腐蚀性介质的测量;仪表无可动部件,安装维护简单; 口 径:DN15~DN3000mm

公称压力:0.6~42MPa

工况温度:-180~+500℃

精  度:±0.2~±1.5%FS

量 程 比:1:10

壳  体:碳钢;不锈钢(或按用户要求提供)(衬氟)

供电方式:内置3.6VDC锂电池(两年换一次);外供24VDC(可选)

输出信号:4~20mA二线制;脉冲0~1000HZ;RS232/RS485(或按用户要求协商提供)

防护等级:IP65 IP67

防爆标志:本安型ExiallCT4;隔爆型ExdllCT4

执行标准:企标Q/BET05-06

表头显示:累积流量;瞬时流量;工况温度;工况压力(温压补偿式才有);棒状满量程百分比;故障自检

公称通径:卡装式:DN10~DN300; 插入式:DN350~DN1000; 法兰式:DN10~DN300。 面对如此众多品种的天然气流量计,对于一般用户选型成了一个难题。如何科学地、客观地选出最佳流量计是需要关注的一个问题。我们认为选型应当遵循适当的规则,尽量避免厂商的误导宣传,为自己找到一种恰到好处的流量计,它就是自己的理想流量计。

选型可按五个方面进行:仪表性能方面、流体特性方面、安装条件方面、环境条件方面和经济因素方面。各方面的考虑因素如下:

1.仪表性能方面:精确度、重复性、线性度、范围度、压力损失、上下限流量、信号输出特性、响应时间等;

2.流体特性方面:流体压力、温度、密度、粘度、润滑性、化学性质、磨损、腐蚀、结垢、脏污、气体压缩系数、等熵指数、比热容、电导率、声速、混相流、脉动流等;

3.安装条件方面:管道布置方向、流动方向、上下游管道长度、管道口径、维护空间、管道振动、接地、电源、辅属设备(过滤、排污)、防爆等;

4.环境条件方面:环境温度、湿度、安全性、电磁干扰等;

5.经济因素方面:购置费、安装费、维修费、校验费、使用寿命、运行费(能耗)、备品备件等。 1.依据五个方面因素初选可用仪表类型;

2.用淘汰法在比较中选出2-3种类型,排出次序;

3.再次按五个方面进行仔细评比,最后淘汰至一种仪表类型。

选型能否成功很大程度上取决于选型人员对仪表性能质量和测量对象特性的确切了解。对于仪表性能质量方面应特别注意厂商的虚宣传及误导成分。测量对象的确切了解非常重要,并非用户对自己的测量对象都有准确了解,许多选型的失败就是因为提供参数不准确所致。有些对象特性是需要经过深入调查才能搞清楚的。 1、精度等级和功能根据测量要求和使用场合选择仪表精 度等级,做到经济合算。比如用于贸易结算、产品交接和能源计量的场合,应该选择精度等级高些,如1.0级、0.5级,或者更高等级; 用于过程控制的场合,根据控制要求选择不 同精度等级;有些仅仅是检测一下过程流量,无需做精确控制和计量的场合,可以选择精度等级稍低的,如1.5级、2.5级,甚至 4.0级,这时可以选用价格低廉的插入式天然气流量计。

2、测量介质流速、仪表量程与口径 测量一般的介质时,天然气流量计的满度 流量可以在测量介质流速0.5—12m/s范围内 选用,范围比较宽。选择仪表规格(口径)不一 定与工艺管道相同,应视测量流量范围是否 在流速范围内确定,即当管道流速偏低,不能满足流量仪表要求时或者在此流速下测量准确度不能保证时,需要缩小仪表口径,从而提 高管内流速,得到满意测量结果。

天然气水合物热动力学模型

1、安装位置:入户总阀门,因为这样有利于天然气工作人员天然气用量的抄报。

2、安装要求:满足抄表、检修、保养和安全使用的要求,即相关标准符合行业和国家的规定

3、安装高度:与燃气灶的水平净距不小于300mm,因为这样有利于燃气的流通。

4、 安装条件:通风良好的房间,防止因为天然气的泄露带来的人身安全威胁。

5、 安装禁区:浴室、卧室、危险品和易燃物品处,因为火花极有可能引发天然气的爆炸,带来人身财产安全威胁。

扩展资料

天然气表的维修及保养

1、产品在使用时不得使用强性烧咸、汽油、酒精等溶剂清洗,可使用中性清洗剂洗。

2、产品发生故障,要及时向管理部门报告,应由专业人员进行检修,用户不得自行拆卸处理。

3、自出厂日期起,十八个月内如发现有质量问题,使用者又遵守说明书中的有关规定,而且铅封未动,我公司将及时负责修理或退换。

参考资料

百度百科-IC卡家用膜式燃气表编辑

燃气的基本特性

一、天然气水合物热力学模型

1.理论基础

随着各种热力学研究的开展,现已有大量有关天然气水合物相平衡的数据和方法,可用来预测天然气水合物的形成。这些研究结果也有利于开发抑制天然气水合物形成的化学添加剂。一般说来,能影响溶液黏度性质的物质通常能抑制天然气水合物的形成。在工业应用上,甲醇是一种常用的阻凝剂。

Van der Waals和Platteeuw(1959)提出的热力学理论,一直是预测天然气水合物平衡模型的理论基础。Sloan(1990)指出,利用这些模型对Lw-H-V系统平衡压力的预测,误差应该不超过10%,而对温度的预测误差在2K左右。多年来,各国学者在Van der Waals和Platteeuw理论的基础上,提出了一些新的观点和天然气水合物相平衡预测的计算方法,对天然气水合物热力学模型的发展作出了贡献。

2.热力学模型

要描述各种天然气水合物相及其可能的多种共存流体相,需要使用一种以上的模型。状态方程是描述天然气水合物平衡的一种方法。为描述富水的流体相,Saito(1964)等使用了理想溶液方法(Raoult定律),其基本前提是,设水中储存气体的溶解度在常规条件下可以忽略不计,尽管有事实证明这种设的有效性令人质疑,但这种方法在过去一段时间内仍为大多数学者所偏爱。当需要进行天然气水合物抑制计算时,要根据Menten(1981)提出的计算方法,用活度系数对Rao-ult定律进行校正。虽然该方法的可靠性要优于Hammerschmidt方程(1939),但它不能用于评估阻凝剂(如甲醇)在共存相中的分布。为校正这个问题,Anderson等(1986)结合使用了Uniquac方程和用于超临界组分计算的亨利定律,计算液相中所有可凝聚组分的逸度。因此,要进行简单的天然气水合物抑制计算,有必要使用上述4个模型。由于这种内在的复杂性,对于现实中更复杂的系统,上述这些方法用处并不大。同时,这些方法都存在着收敛困难,不能作为进一步精确计算(如复合系统的稳定性分析)的基础。

Englezos等(1991)和Avlonitis等(1991)根据一个单一的状态方程,建立了全部流体相的模型。前者使用了有4个参数的立方状态方程,后者使用了有3个参数的立方状态方程,并开发了针对非对称相互作用的专用混合规则。根据目前的研究趋势看,对全部流体相使用单一的状态方程是最有发展潜力的方法。

3.模型的完善和发展

对天然气水合物相的理想固溶体,在设被圈闭的分子之间没有相互作用的前提下,Vander Waals等(1959)认为能够用一种Langmuir型吸附等温线描述固体天然气水合物相。他们利用这个设,证明天然气水合物相中水的化学势能与形成天然气水合物的气体性质无关,仅取决于天然气水合物相中两种不同类型空穴中气体的总浓度,天然气水合物与理想稀溶液具有相同的行为。在这个理论基础上,Parrish等(12)将用于计算分解压的天然气水合物模型延伸到多组分系统中。理想固溶体理论忽视了非理想状态所带来的影响,如“主”分子晶格的伸展或变形、被圈闭气体分子运动所受的限制,都有可能增加“主”分子和“客”分子的化学势。Hwang(1993)与他的同事们在分子动力学模拟的基础上,研究了“客”气体分子的大小对天然气水合物稳定性的影响。Avlanitis(1994)指出:这种方法的主要缺陷在于选取了不正确的势能参数,特别是乙烷的势能参数。为弥补这个缺陷,Avlonitis用一种折中方法优化了理想固溶体模型参数,在含甲醇或不含甲醇情况下,在Lw-H-V框架内,对天然的或合成的气体混合物都获得了令人满意的预测结果。

二、天然气水合物动力学模型

天然气水合物动力学是水合物领域的研究重点。通常以方程M+nH2O<=>[M·nH2O]表示水合物生成,这是一个气-液-固三相或气-固两相的多相反应过程,同时也是一个包含传热、传质和生成水合物反应机理的复杂反应方程,影响反应的条件很多,也很复杂。相对于天然气水合物热力学而言,对天然气水合物动力学的研究较少。天然气水合物动力学可以大略分为天然气水合物生成动力学和天然气水合物分解动力学两类。

1.天然气水合物生成动力学

针对目前研究亟待解决的水合物生成速率和效率问题,主要有以下两种研究方法(赵义等,2004):①热力学方法,即向反应体系中加入其他气体添加剂,让气体添加剂占据水合物结构中没有被占据的空腔,来降低水合物簇之间的转换活化能,提高水合物的晶体空腔填充率,从而达到促进水合物生成和提高水合物稳定性的目的,如向甲烷的水合物生成体系中加入少量的丙烷,就可以大大降低甲烷水合物的生成条件,并且生成的结构更稳定;②动力学方法,仅限于表面活性剂及助溶剂(hy-drotropes)的研究。对此有两种说:一是Sloan的观点,认为表面活性剂之所以促进水合物的生成,主要是因为它降低了气-液界面张力,增大了扩散传质速率,使气体更容易进入液相;二是Zhong等(2000)的观点,提出了一个4步骤的反应历程来解释观察到的现象,尚未得到充分的验证。以下对这4个步骤进行说明:

(1)气-水簇的形成

天然气水合物的成核过程是天然气水合物核向临界大小的靠近且生长的过程。气-水生长簇是天然气水合物形成的先兆。如果生长的核小于临界大小,核是不稳定的,可能在水溶液中生长或破裂。一个生长着的天然气水合物核,如已具有临界大小,就是稳定的,可以立即导致结晶天然气水合物的形成。

认识影响气-水簇形成的因素,有助于理解天然气水合物的成核过程。特别是水分子结构,它是指通过氢键相互联结水分子所形成的结构,在成核过程中起重要作用。冰是一种高度结构化的水,其水分子固定在一个呈四边形氢键结构的位置上。当温度升高到零点以上时,结构开始变得更加松散,与高度有序的冰的结构相比更加无序。

Sloan等提出了一种天然气水合物成核过程的分子机制,设想气-水簇开始形成临时结构,随后这些结构再生长成稳定的天然气水合物晶核。他们通过使用化学动力学方程,针对机制中设的每一种情况对成核过程进行了模拟。Lekvam和Ruoff也提出了反应作用的动力学机制。这种方法使用一种动力学速率模型,研究成核和生长过程,但他们的这种模型并没有强调天然气水合物核的稳定性。

Vysniauskas和Bishnoi在实验中使用不同来源的水进行了实验。结果显示,随着水的来源不同,平均成核开始期也不同。在实验中,来自于融化的冰水与实验中使用热自来水相比,前者的平均开始期较低;同样,使用来自于天然气水合物分解的水与使用热自来水相比,前者的平均开始期也较低,这就是所谓的“记忆效应”。这种现象在其他学者的研究中也出现过。研究发现,在已溶解的气体分子周围,水结构被强化了;这种作用于溶解气体分子周围的水结构强化现象,被认为是“疏水水合作用”现象。Frank等也提出了同样的观点。Glew在对甲烷天然气水合物和甲烷水溶液的热动力学性质进行研究时,发现了类似现象。Glew对甲烷-水系统分子模拟的研究显示,甲烷分子周围的水分子平均配位数对于Ⅰ型结构的小空穴来说,接近于21。Rahman和Stillinger认为,在溶解的溶质分子周围,水的网架与天然气水合物类型的孔型相似。另外,热力学分析显示,溶液具有很大的负熵,这正是水体内一种结构形成的标志。

气-水簇在天然气水合物成核过程中起了很重要作用。当溶液在过冷或过饱和状态下时,成核过程就发生了,学者们通常使用过冷或过饱和方法来研究成核作用。Bishoni等在研究时就用了过饱和方法,Kobayashi、Sloan等则用了过冷方法。

图10-5 典型的气体消耗简图

Bishnoi等在恒定温压下进行了天然气水合物形成实验。在实验温度下,实验压力比三相天然气水合物平衡压力要高,图10-5是实验过程中因气体溶解和天然气水合物形成,而导致的气体消耗的累积摩尔量随时间变化的曲线。

图10-5中A点的气体消耗摩尔量表示已溶解气体量,与三相天然气水合物平衡压力对应。A点与B点之间的准稳区域,代表着天然气水合物的成核过程。B点表示以突变方式出现的稳定临界大小天然气水合物核的出现点。Englezos和Bishnoi发现,在成核点B之前的溶解气体摩尔量,实际上要高于估算的二相(气-液)准稳定平衡状态下的摩尔量,估算来源于稳定区域的外推;气-水簇的形成能够耗尽在团块流体相中的天然气水合物形成的气体,从而导致超过两相值的气体溶解。Englezos等提出了计算天然气水合物核临界大小的方法,天然气水合物生长过程开始于图10-5中B点,并沿着线BC进行。根据Kobayashi和Sloan的实验结果,在容积不变的情况下,天然气水合物形成过程中的压力和温度轨迹如图10-6所示。图10-5中点A等同于图10-6中的点A。图10-6中点B也等同于图10-5中的点B,在B点,以突变方式形成的稳定天然气水合物颗粒的出现,导致了压力的突然下降。在图10-6中,点A与点B之间区域表示成核过程中的准稳定状态。过冷却方法和过饱和方法的相似性在图10-5与图10-6之间体现得相当明显。在图10-5中,与三相天然气水合物平衡相应,点A与点B之间,是处于准稳定状态的天然气水合物成核区域中气-水簇的生长区域。天然气水合物在点B的出现是突然的,Kobayashi描述它为“灾变性的”。尽管天然气水合物颗粒很小,但它们的数量很多,足以使溶液变得混浊。Kobayashi和Sloan认为,天然气水合物的突然出现使溶液不再处于过饱和状态,这样便导致了压力的剧降。

(2)天然气水合物的成核和生长过程

图10-6 天然气水合物形成实验温度-压力轨迹简图

从上面讨论可以看出,过冷方法与过饱和方法是等价的,对于天然气水合物成核过程来说都很重要。许多研究者建立了开始期和过冷之间的函数关系,过饱和同样也可以根据过冷却度进行转换。溶解中任何点的过饱和,都是在这点超过饱和浓度值的过量溶解气体浓度,可以用溶液中某一点的过饱和来判断稳定天然气水合物核最先出现在哪个地方。对于不流动系统,溶解气体浓度在分界面附近可能最高,天然气水合物的形成可能最先发生在气-液分界面上。对于搅拌系统来说,在溶液中最先形成天然气水合物的地方,取决于这点上溶解气体的浓度。溶液的水动力条件和气体溶解率可以影响天然气水合物成核的开始期。

Bishnoi等认为,天然气水合物成核作用开始期与过饱和作用相联系,根据对甲烷、乙烷以及二氧化碳天然气水合物的实验数据分析,揭示了成核开始期与过饱和的关系。当过饱和度减小时,成核开始期增大;当过饱和时,开始期增加到一个很大的值;相反,当过饱和度增加时,开始期减少到一个很小的值;当过饱和度很低时,开始期数据的分散程度很高,当过饱和度增加时,开始期数据的分散程度减小。天然气水合物成核过程,本质上是一个内在的随机过程,但高的过饱和度能够掩盖成核现象的随机本质,从而使观察到的开始期看起来像是早已被决定了一样。另外,天然气水合物成核的随机本质,也能够被实验系统中用来进行成核研究的其他因素所掩盖。在天然气水合物成核研究中,Parent和Bishnoi在原始实验状态下又观察到了开始期数据的随机性。

关于天然气水合物成核的研究还处于宏观层次上。对在溶液中的亚临界情况,还知之甚少。在建立基于分子级的模型之前,须通过实验研究揭示天然气水合物的成核机制。

天然气水合物的生长过程,是指作为固态天然气水合物的稳定天然气水合物核的生长,自20世纪60年代以来,许多学者就已对此进行了研究。在研究丙烷天然气水合物生长过程时,Knox认为晶体的近似大小取决于过冷度(指使液体冷到凝固点以下而不凝结),较高的过冷度主要产生较小的颗粒,并导致明显的晶体生长。Pinder通过研究天然气水合物形成动力学,提出天然气水合物形成的反应速率随渗滤作用而定。Barrer和Esge在研究天然气水合物动力学时发现,对氪形成的天然气水合物来说,其晶体生长有一个明显的开始期。Falabella使用类似于Barrer和Esge的实验装置进行了研究,也得到了相似的结论。Falabella还发现,对于甲烷来说,其天然气水合物生长也有一个开始期,他根据冰的动力学数据,通过进行等温压换算,提出了一个次级动力学模型。Sloan和Fleyfel通过实验,研究了环丙烷天然气水合物的生长动力学。针对在纯水中的各种气体和气体混合物,Bishnoi等一直进行着天然气水合物形成动力学的系统性研究,在实验中使用一个搅拌反应器,其中装有电解质和表面活化剂溶液。他们认为,在稳压条件下,全部气体消耗量是时间的函数。

(3)天然气水合物生长动力学模型

在研究早期,Vysniauskas和Bishnoi提出了一个关于气体消耗速率的半经验模型。后来,Engl-ezos等把只有一个可调节参数的天然气水合物生长动力学模型公式化,这个模型是一个以结晶化和团块传递理论为基础的模型;它设固体天然气水合物颗粒被一个吸附“反应”层所包围,吸附反应层外是一层不流动的液体扩散层,溶解的气体从围绕在不流动液中向天然气水合物颗粒-水分界面扩散;然后,气体分子由于吸附作用而进入结构化的水分子构架并结合在一起。当水分子过量时,分界面被认为是气体最易集中的地方(反应速率用已溶解气体的逸度替代其浓度)。

在三相天然气水合物平衡压力和颗粒表面温度下,在扩散层中,溶解气体逸度值从fb变化到fs;在吸附层中,逸度值直降至feq,围绕颗粒的扩散动力等于fb-fs;但是对于“反应”阶段来说,这个值是fs-feq。在稳定状态下,扩散阶段和“反应”阶段的速率相等,fs能够从单个速率表达式中消去,可得到每一个颗粒的生长速率如下:

非常规油气地质学

式中:R*是扩散和吸附反应过程的组合速率常数;Ap是每个颗粒的表面积。在溶解气体的逸度中,fb-feq值不同于三相平衡逸度中的fb-feq值,它指的是全部动力。当在良好的搅拌系统中时,R*值表示反应的内在速率常数,R*值由甲烷和乙烷天然气水合物形成动力学的实验数据决定。在没有任何附加参数的情况下,这个模型可成功地扩展到甲烷和乙烷混合物的形成动力学;在这个模型中,纯水中甲烷天然气水合物形成时获得的R*值,可以应用到电解质溶液中的天然气水合物形成模型中,两者的R*值是相同的。

在液态二氧化碳和水的分界面上,Shindo等提出了二氧化碳天然气水合物形成模型;他们设天然气水合物主要发生在液态二氧化碳中,而不是在水中。最近,Skovborg和Rasmussen使用实验的气体消耗数据(数据来源于Bishnoi等),提出了一种天然气水合物生成动力学模型;认为天然气水合物的形成,能够影响液体一侧的气-液团块传递系数。

(4)气-水体系中水合物的生成机理

天然气水合物结构和性质类似于冰(陈孝彦等,2004),气-水体系中天然气水合物生成时,气体分子首先要溶解到水中,一部分气体分子与水一起形成水合物骨架,类似于冰的碎片(周公度等,1995),形成了水合物结构中的第一种空穴。这些框架是一种亚稳定结构,相互结合形成更大的框架。在结合过程中,为保持水分子的4个氢键处于饱和状态,不可能做到紧密堆积,缔合过程中必然形成空的包腔,就形成了水合物结构中的另外一种空穴。另一部分溶解的气体分子通过扩散渗入到这些空穴中,并进行有选择的吸附;在吸附过程中满足Langmuir吸附定律,小气体分子进入小空穴,同时也能进入大空穴,大气体分子只能进入大空穴,即并不是每一个空穴都能被气体分子占据,这就解释了水合物平均只有三分之一左右的空穴被客体分子占据的机理。

陈孝彦等(2004)总结提出了气-水体系中水合物的生成机理,分为4步:①气体分子溶解过程,即气体分子溶解到水中;②水合物骨架形成过程,即气体分子的初始成核过程,溶解到水中的气体分子和水,形成一种类似冰碎片的天然气水合物基本骨架(一种空腔),这种骨架通过结合形成另一种不同大小的空腔;③气体分子扩散过程,即气体分子扩散到水合物基本骨架中;④气体分子被吸附过程,即天然气气体分子在水合物骨架中进行有选择的吸附,从而使水合物晶体增长。

2.天然气水合物分解动力学

(1)理论基础

人们提出了许多基于相平衡的热力学模型来预测一定条件下水合物的生成条件及其抑制途径(赵义等,2004),如通过改变其生成条件,来达到抑制目的的物理方法,包括干燥脱除法、加热保温法、降压法和加入非水合物形成气体法等,还包括通过加入添加剂的化学方法。

化学抑制法主要有热力学抑制剂和动力学抑制剂两种(赵义等,2004)。前者普遍取在生产设备和运输管线中注入甲醇、乙醇、乙二醇和氯化钠、氯化钙等,改变水合物热力学稳定条件,抑制或避免水合物生成;后者从降低水合物生成速度,以抑制水合物晶粒聚结和堵塞出发,通过加入一定量化学添加剂来改变水合物形成的热力学条件,显著降低水合物成核速率,延缓乃至阻止临界晶核生成,干扰水合物晶体的优先生长方向,影响水合物晶体的定向稳定性,具有用量少、效率高等优点,已成为了研究热点(吴德娟等,2000)。根据分子作用的不同机理,动力学抑制剂分为水合物生长抑制剂、水合物聚集抑制剂和具有双重功能的抑制剂,主要包括酰胺类聚合物、酮类聚合物、亚胺类聚合物、二胺类聚合物、共聚物类等,其中酰胺类聚合物是最主要的一类。

Holder等(1987)研究了在天然气水合物分解过程中的热传递过程,得出与成核沸腾现象相似的结论。Kamath等(1987)根据这种相似性,提出在丙烷分解期间,热传递率是ΔT的幂函数,其中天然气水合物表面的ΔT值与团块流体中的ΔT值是不相同的。后来,Kamath和Holder总结了它们的关系性,并用到甲烷天然气水合物分解过程中。

Selim等(1989)研究了甲烷水合物的热分解,认为水合物的分解是一个动态界面消融问题,并运用一维半无限长平壁的导热规律,建立了甲烷水合物的热分解动力学模型,Kamath等(1987)研究了甲烷和丙烷的热分解问题,认为水合物的分解主要受传热控制,其分解可与液体的泡核沸腾相比拟,而流体主体与水合物表面的温差ΔT是过程的推动力(Kamath et al.,1987)。

(2)实验研究

对天然气水合物分解动力学的基础研究是在带搅拌的大容积反应器中进行的,水合物以固体颗粒状分散于液体中,这用来研究分解本征动力学是可以的(周锡堂等,2006)。但用于研究与天然气生产有关,特别是天然气水合物分解的反应工程动力学,则缺乏实际意义(周锡堂等,2006)。自然赋存的天然气水合物可能是大块状的,更多的存在于多孔介质中。Sloan等报道过砂岩中的甲烷水合物生成和分解的一些实验数据,但没有仔细地研究水在孔隙里的分布情况;Circone等报道过以冰粒形成的水合物在272.5K的分解速率数据(Circone et al.,2000),但也没有提供相应的动力学方程。存在于冻土带或海底沉积物中的天然气水合物,与人工合成的、仅仅存在于自由水中的水合物颗粒是大不相同的。因此从工程实际来考虑,研究多孔介质中水合物的分解动力学行为更有意义。Yousif等第一次将水合物分解动力学的研究与天然气的生产结合起来(Yousif et al.,1991),不过其模型在估算水合物面积时却是经验性的。Goel等研究了天然气水合物的分解行为(Goel et al.,2001),运用发散状扩散方程,分别得出了关于大块状和多孔介质中的天然气水合物的分解动力学解析模型。然而该模型忽略了分解水的流动和分解气出速率的变化,严重影响了其有效性。Hisashi等研究了多孔介质中水合物的形成和降压分解问题(Hisashi et al.,2002)。在其实验中,分别用了多种粒度的玻璃珠和合成陶粒来模拟多孔介质。最终结果表明,不同介质中水合物分解的表观反应速率常数不同,所得回归方程也不一样(周锡堂等,2006)。因此,在确定自然存在天然气水合物的分解速率时,有必要研究当地介质的孔隙性质及其粒度分布。

Bishnoi等开展了对甲烷天然气水合物分解的实验研究,实验是在一个搅拌良好的反应器中进行的;天然气水合物在三相平衡压力以上存在;然后,在保持温度不变的条件下,把压力降低到低于三相平衡压力,这时,天然气水合物分解就开始了;实验在快速搅拌中进行,以保证避免团块传递的影响。他们提出,天然气水合物分解可能分为两个阶段:颗粒表面原结晶“主”格子破坏和随后的“客”分子从表面的解吸过程。Kim等提出了天然气水合物分解原内在动力学模型,他们设天然气水合物的颗粒为球形,并且被云雾状气体所包围,如图10-7所示。在图中,正在分解的颗粒被解吸“反应”层所围绕,再外层是排放出的气体云,天然气水合物颗粒分解速率公式如下:

非常规油气地质学

式中:kd为分解速率常数;Ap为颗粒表面积;feq为气体三相平衡逸度;fvg为气体分解策动力,定义为feq与fvg之差,即feq-fvg。

(3)研究进展和意义

与前文提到的对天然气水合物生长的研究一样,对天然气水合物分解的研究,应该包括对决定分解颗粒大小分布因素的研究。

图10-7 天然气水合物分解图

对天然气水合物分解和形成动力学的研究,给我们提出了大的挑战。天然气水合物形成被认为是一种包括成核过程和生长过程的结晶化过程。成核作用是一种内在的随机过程,它涉及气-水簇向具临界大小的稳定天然气水合物核的形成和生长问题。因较大的成核策动力和多相性的存在,成核作用随机性质不易被察觉。目前,对天然气水合物成核过程仍没有在分子级别上的测试方法。

天然气水合物生长包括作为固态天然气水合物的稳定水合核的生长,正在生长的天然气水合物颗粒表面积,强烈影响着生长速率。天然气水合物分解是一系列晶格的破坏和气体解吸过程,在分解时的热传递率与成核沸腾现象是相似的。应该深入研究天然气水合物颗粒在分解和生长过程中的大小分布,并应用于这些过程的模型化中。

尽管有多个天然气水合物形成模型已经被提出,但天然气水合物形成核的过程并没有完全被揭示。目前,科学家通过研究气体-水的接触面,已取得了一些实验上的进展,但是这些实验都是最近做的,并且至今没有充足的信息来提供一个确切的描述。这些实验通过研究熔点附近的热力学状态范围,来揭示与接近天然气水合物形成条件相联系的界面结构特征。在实验中,科学家把分子动力学模拟,应用到Ⅰ型甲烷天然气水合物和甲烷气体的接触面,发现接触面在270K以下是稳定的,在300K时发生熔解,同时发现了导致接触面稳定的压力条件。在伴随着表面层的无序化过程中,预熔现象是明显的。动力学性质显示了水平面格子振动的各向异性,这被认为是与在Ⅰ型天然气水合物(001)面上存在着晶轴相联系。这个意想不到的结果还有待于进一步研究。

在研究天然气水合物形成模型的同时,由于天然气水合物有时能对高纬度地区石油和天然气的运输造成意想不到的麻烦(如形成管塞),有的学者(Monte Carlo)也开始了怎样抑制天然气水合物形成的研究。通过实验研究发现,可以使用一种无毒的、能溶解于水的聚合物———科利当(PVP),来抑制天然气水合物的形成。Monte Carlo通过不同条件下PVP对单体、二聚物、四聚物、八聚物吸附性的研究,发现吸附作用主要在吡硌烷酮氧(pyrrolidone oxygen)和水面之间两个氢键的形成过程中出现。这种研究结果表明,通过在天然气水合物生长点上PVP的吸附,来抑制天然气水合物的形成是可行的,并且影响吸附的主要因素具有内在的统计性。

燃气表超期,国家有哪些规定?

1、密度:指单位容积所含有的重量。液化石油气的气态密度为2.0—2.5kg/Nm 3

2、比重:燃气的比重指单位容积的燃气所具有的密度,同相同状态下空气密度的比值,也叫相对密度或相对比重。

3、热值:单位容积燃气完全燃烧所放出的热量,成为该燃气的热值。

热值分为高热值和低热值。

高热值是指单位燃气完全燃烧后,其烟气被冷却到初始温度,其中的水蒸气以凝结水的状态排出时,所放出的全部热量。

低热值是指单位燃气完全燃烧后,其烟气被冷却到初始温度,其中的水蒸气以蒸气的状态排出时,所放出的全部热量。

4、理论空气量:指单位燃气按燃烧反应方程式完全燃烧所需要的最小空气量。

液化石油气燃烧所需空气量是天然气的3倍;是人工燃气的6倍。

5、膨胀与压缩

液态液化石油气的体积因温度升高而膨胀。在装满液化石油气的密闭容器中,随温度的升高,其体积迅速膨胀使压力很快升高到将容器爆破。如将水的体积膨胀系数设为1,液态液化石油气的体积膨胀系数大约是水的16倍。

6、饱和蒸气压

液态烃的饱和蒸气压,简称蒸气压,就是在一定温度下密闭容器中的液体及其蒸气压处于动态平衡时蒸气所表示的绝对压力。

饱和蒸气压与容器的大小及液量多少无关,与液化石油气的组份及温度有关。温度升高时,饱和蒸气压增大;轻组份比重组份的饱和蒸气压大。

7、气化潜热

气化潜热就是单位质量(1KG)的液体变成与其处于平衡状态的蒸气所吸收的热量。

物质从气态转变为液态,叫液化;气态转变为液态时,要放出热量。物质从液态转变为气态,叫气化。液态转变为气态时,要吸收热量。

液化石油气以液态储存,各种燃具使用的都是气态液化石油气。所以液化石油气经过从液态转变为气态的过程,称气化或蒸发,要吸热。当外界温度低不能供给气化或蒸发所需的热量时,液化石油气吸收自身的热量,使温度降低直至停止气化。

8、压力的分类

单位面积上的压力称作压力强度,简称压强。工程上把压强简称为压力。压力又分相对、绝对压力、负压力。

相对压力:用计量仪表测量出的那一部分压力,也叫表压力、正压力、工作压力。

绝对压力:大气压力与表压力之和,叫绝对压力,又叫实际压力。

负压力:用计量仪表测量出低于大气压力的那一部分压力,此时的相对压力因小于大气压力,因表示的数值为正,叫负压力。也叫真空度。

9、着火温度

燃料能连续燃烧的最低温度,称为着火温度。在常压(大气压)下,液化石油气的着火温度为365—460℃,天然气的着火温度为270—540℃,城市煤气着火温度为270—605℃。其着火温度比其它燃料要低的多,所以又叫易燃气体。

10、爆炸极限

可燃气体和空气的混合物遇明火而引起爆炸时的可燃气体浓度范围称为爆炸极限。在这种混合物中当可燃气体的含量减少到不能形成爆炸混合物时的那一含量,称为可燃气体的爆炸下限;而当可燃气体的含量一直增加到不能形成爆炸混合物时的那一含量,称为爆炸上限(见后页表)

11、燃烧的热值

气体燃料中的可燃成分(氢、一氧化碳、碳氢化物、硫化氢)在一定条件下与氧发生激烈的氧化作用,并产生大量的热和光的物理化学反应过程叫做燃烧。

燃烧的三个条件:可燃物、助燃物(氧)、着火源缺一不可。

一标准立方米燃气完全燃烧所放出的热量,称为该燃气的热值。单位为KJ/m 3。

热值分为高热值和低热值。

一般焦炉煤气的低热值大约为16000—17000KJ/m3,天然气的是36000—46000 KJ/m 3,液化石油气的是88000—120000KJ/m 3。

按1KCAL=4.1868KJ 计算:

焦炉煤气的低热值约为3800—4060KCAL/m3;天然气的是8600—11000KCAL/m3;液化石油气的是21000—286000KCAL/m3。

在管道中,多少MPa的压力为低压、中压、高压? 其定义的国家标准是什么?

根据国家计量法规,天然气居民用户使用的燃气表是以天然气为介质的膜式燃气表,因膜式燃气表具有计量精确、稳定性强、密封性好、安全可靠等优点,因此被广泛用。

与汽车行驶到规定里程要强制报废一样,国家法规对燃气表也规定了使用年限,道理也一样:就是为了安全!按《膜式燃气表检定规程JJG577-2012》规定,以天然气为介质且最大流量不超过10m3/h的燃气表使用期限为十年,到期需强制报废并进行更换。

燃气表检定注意事项:

1、根据检定规程的要求,燃气表在检定前及检定中的一些环境、水温等要求。

2、流量调节阀的安放位置用钟罩式气体流量标准装置检定燃气表的方法有静态法和动态法,通过试验可知,流量调节阀放在表前及表后都可以。但是在表前调节检定量时,一定要使用理想气体方程进行压力修正。表后调节检定流量时,如果压力变化引起的示值误差较小(示值误差的绝对值小于0.2%)一般可忽略不计。由公式(2)可知vref=VsPsTmPmTs=Vs(101000+1010)×(273.15+19.9)(101000+140)×(273.15+20.5)=1.0077Vs根据《JJG577-2005膜式燃气表》检定规程,当恒温室内标准器处和燃气表的气体温度差≤0.5℃,可以忽略温度所引起的误差。则vref=VsPPm=Vs101000+1010101000+140=1.0086Vs从以上数据可知,压力引起的燃气表示值误差约为0.5%,不能忽略。根据《JJG577-2005膜式燃气表》检定规程,单次测量示值误差按公式。

压力管道的级别划分标准:

1、真空管道 P<0MPa。

2、低压管道 0≤P≤1.6MPa。

3、中压管道 1.6<P≤10MPa。

4、高压管道10<P≤100MPa。

5、超高压管道 P>100MPa。

从中国颁发《压力管道安全管理与监察规定》以后,“压力管道”便成为受监察管道的专用名词。在《压力管道安全管理与监察规定》第二条中,将压力管道定义为:“在生产、生活中使用的可能引起燃爆或中毒等危险性较大的特种设备”。

扩展资料

压力管道的作业一般都在室外,敷设方式有架空、沿地、埋地,甚至经常是高空作业,环境条件较差,质量控制要求较高。由于质量控制环节是环环相扣,有机结合,一个环节稍有疏忽,导致的都是质量问题。

而焊接是压力管道施工中的一项关键工作,其质量的好坏、效率的高低直接影响工程的安全运行和制造工期,因此过程质量的控制显得更为重要。

根据压力管道的施工要求,必须在人员、设备、材料、工艺文件和环境等方面强化管理。有针对性地取严格措施,才能保证压力管道的焊接质量,确保优质焊接工程的实现。

百度百科——压力管道